# green's theorem

122 views (last 30 days)
Sanjana Chhabra on 9 Jan 2022
Commented: Rena Berman on 3 Feb 2022
Verify Green’s theorem for the vector field𝐹=(𝑥2−𝑦3)𝑖+(𝑥3+𝑦2)𝑗, over the ellipse 𝐶:𝑥2+4𝑦2=64
Rena Berman on 3 Feb 2022

Mehul Mathur on 11 Jan 2022
clear
clc
syms x y t
F=input('Enter the vector function M(x,y)i+N(x,y)j in the form [M N]: ');
M(x,y)=F(1); N(x,y)=F(2);
r=input('Enter the parametric form of the curve C as [r1(t) r2(t)]: ');
r1=r(1);r2=r(2);
P=M(r1,r2);Q=N(r1,r2);
dr=diff(r,t);
F1=sum([P,Q].*dr);
T=input('Enter the limits of integration for t [t1,t2]: ');
t1=T(1);t2=T(2);
LHS=int(F1,t,t1,t2);
yL=input('Enter limits for y in terms of x: [y1,y2]: ');
xL=input('Enter limits for x as constants: [x1,x2]: ');
y1=yL(1);y2=yL(2);x1=xL(1);x2=xL(2);
F2=diff(N,x)-diff(M,y);
RHS=int(int(F2,y,y1,y2),x,x1,x2);
if(LHS==RHS)
disp('LHS of Greens theorem=')
disp(LHS)
disp('RHS of Greens theorem=')
disp(RHS)
disp('Hence Greens theorem is verified.');
end

### Categories

Find more on Loops and Conditional Statements in Help Center and File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by