green's theorem

122 views (last 30 days)
Sanjana Chhabra
Sanjana Chhabra on 9 Jan 2022
Commented: Rena Berman on 3 Feb 2022
Verify Green’s theorem for the vector field𝐹=(𝑥2−𝑦3)𝑖+(𝑥3+𝑦2)𝑗, over the ellipse 𝐶:𝑥2+4𝑦2=64
  4 Comments
Rena Berman
Rena Berman on 3 Feb 2022

(Answers Dev) Restored edit

Sign in to comment.

Answers (1)

Mehul Mathur
Mehul Mathur on 11 Jan 2022
clear
clc
syms x y t
F=input('Enter the vector function M(x,y)i+N(x,y)j in the form [M N]: ');
M(x,y)=F(1); N(x,y)=F(2);
r=input('Enter the parametric form of the curve C as [r1(t) r2(t)]: ');
r1=r(1);r2=r(2);
P=M(r1,r2);Q=N(r1,r2);
dr=diff(r,t);
F1=sum([P,Q].*dr);
T=input('Enter the limits of integration for t [t1,t2]: ');
t1=T(1);t2=T(2);
LHS=int(F1,t,t1,t2);
yL=input('Enter limits for y in terms of x: [y1,y2]: ');
xL=input('Enter limits for x as constants: [x1,x2]: ');
y1=yL(1);y2=yL(2);x1=xL(1);x2=xL(2);
F2=diff(N,x)-diff(M,y);
RHS=int(int(F2,y,y1,y2),x,x1,x2);
if(LHS==RHS)
disp('LHS of Greens theorem=')
disp(LHS)
disp('RHS of Greens theorem=')
disp(RHS)
disp('Hence Greens theorem is verified.');
end

Categories

Find more on Loops and Conditional Statements in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by