Efficient matrix multiplication with weights
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Let A and B be two matrices, say square NxN matrices. Ordinary matrix multiplication A*B implements (A*B)_{ij} = Sum_k A_{ik} B_{kj}. Is there an efficient way in Matlab to implement a weighted version of this product, where we have a matrix of weights W and we want to do :
Weighted(A*B)_{ij} = Sum_k A_{ik} B_{kj} W_{i-j,k}
(let's say here that A and B are triangular so that only i>=j need be considered).
How can I efficiently express Weighted(A*B), avoiding, if possible, for loops and the like ? I would like to keep everything vectorialized / use only matrix products and elements wise products etc.
3 commentaires
Réponse acceptée
Matt J
le 20 Jan 2022
Modifié(e) : Matt J
le 20 Jan 2022
A more memory efficient solution is as follows. It has a loop, but is still highly vectorized.
Wt=W.';
At=A.';
T=toeplitz(1:N,[1,zeros(1,N-1)]);
result=zeros(N);
for i=1:N
result(T==i)=sum( At(:,1:end+1-i).*Wt(:,i).*B(:,i:end) ,1);
end
2 commentaires
Matt J
le 20 Jan 2022
You're welcome. If it works as you need it to, though, please Accept-click the answer.
Plus de réponses (1)
Matt J
le 20 Jan 2022
Modifié(e) : Matt J
le 20 Jan 2022
Using sepblockfun() from,
T=toeplitz(1:N);
WW=W.';
WW=reshape(WW(:,T), N^2,N);
BB=repmat(B,N^2,1);
AA=repmat( reshape(A.',[],1) ,1,N^2);
result=sepblockfun(AA.*WW.*BB, [N,1] , 'sum' ); %
1 commentaire
Matt J
le 20 Jan 2022
For N=1000, you would need a lot of RAM for this to work. You might be able to mitigate RAM requiements by using single floats inputs. The result could still be obtained in doubles with,
result=sepblockfun(AA.*WW.*BB, [N,1] , @(x,d)sum(x,d,'double') ); %
Voir également
Catégories
En savoir plus sur Creating and Concatenating Matrices dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!