Define function with nonlinear equation system vercat error

1 vue (au cours des 30 derniers jours)
weggee
weggee le 23 Jan 2022
Commenté : Walter Roberson le 24 Jan 2022
Hi,
I am trying to define a nonlinear equation system in a function in order to solve it using fsolve.
Already calling the function it self raises the error
"Error using vertcat
Dimensions of arrays being concatenated are not consistent."
running fminunc results in
Error in fminunc (line 307)
f = feval(funfcn{3},x,varargin{:});
Error in GPS_Calculation (line 49)
sol = fminunc(f,[6 6 6 6])
Caused by:
Failure in initial objective function evaluation. FMINUNC cannot continue.
How can I fix this?
f = @(x)[sqrt( (101 - x(1)).^2 + (16 - x(2)).^2 + (207 - x(3)).^2 ) + x(4) - 310.5685;
sqrt( (52 - x(1)).^2 + (21 - x(2)).^2 + (302 - x(3)).^2 ) + x(4) - 387.5097;
sqrt( (17 - x(1)).^2 + (53 - x(2)).^2 + (350 - x(3)).^2 ) + x(4) -434.7066;
sqrt( (-15 - x(1)).^2 + (159 - x(2)).^2 + (208 - x(3)).^2 ) + x(4) - 341.25730]
f([6 6 6 6])
sol = fminsearch(f,[6 6 6 6])
sol = fminunc(f,[6 6 6 6])
sol = fsolve(F,[6 6 6 6]

Réponses (2)

Matt J
Matt J le 23 Jan 2022
Modifié(e) : Matt J le 23 Jan 2022
F = @(x)[sqrt( (101 - x(1)).^2 + (16 - x(2)).^2 + (207 - x(3)).^2 )+ x(4)- 310.5685;
sqrt( (52 - x(1)).^2 + (21 - x(2)).^2 + (302 - x(3)).^2 )+x(4)-387.5097;
sqrt( (17 - x(1)).^2 + (53 - x(2)).^2 + (350 - x(3)).^2 )+x(4)-434.7066;
sqrt( (-15 - x(1)).^2 + (159 - x(2)).^2 + (208 - x(3)).^2 )+x(4)-341.25730];
f=@(x) norm(F(x))^2;
[sol,fval] = fminsearch(f,[6 6 6 6],optimset('TolFun',1e-12','MaxIter',1e5,'MaxFunEvals',inf))
sol = 1×4
5.1967 7.5954 8.4908 89.9902
fval = 2.7201e-14
opts=optimoptions('fminunc','StepTol',1e-12,'OptimalityTol',1e-12,'FunctionTol',1e-12,'Display','none');
[sol, fval] = fminunc(f,[6 6 6 6],opts)
sol = 1×4
5.1283 7.4954 8.2884 89.7746
fval = 6.2284e-07
opts=optimoptions('fsolve','StepTol',1e-12,'OptimalityTol',1e-12,'FunctionTol',1e-12,'Display','none');
[sol,fval] = fsolve(F,[6 6 6 6],opts)
sol = 1×4
5.1967 7.5954 8.4908 89.9902
fval = 4×1
1.0e+-12 * 0.1137 -0.1705 -0.1137 0
  7 commentaires
Torsten
Torsten le 24 Jan 2022
Is there also a way to define the equations system as a scalar right away? That would avoid the problem
That's what taking the norm of the equations and using a minimizer to solve does.
Matt J
Matt J le 24 Jan 2022
You caould have done
f = @(x)norm( [sqrt( (101 - x(1)).^2 + (16 - x(2)).^2 + (207 - x(3)).^2 )+ x(4)- 310.5685;
sqrt( (52 - x(1)).^2 + (21 - x(2)).^2 + (302 - x(3)).^2 )+x(4)-387.5097;
sqrt( (17 - x(1)).^2 + (53 - x(2)).^2 + (350 - x(3)).^2 )+x(4)-434.7066;
sqrt( (-15 - x(1)).^2 + (159 - x(2)).^2 + (208 - x(3)).^2 )+x(4)-341.25730] );

Connectez-vous pour commenter.


Walter Roberson
Walter Roberson le 24 Jan 2022
You have a multi objective search, trying to simultaneously minimize four different objectives. fmincon is only able to minimize a single objective. You need to switch to a Pareto search using gamultiobj() or paretosearch()
Remember that Pareto searches are not global minima searches: they correspond to finding local minima such that moving the point in any direction makes at least one of the objectives worse.
  1 commentaire
Walter Roberson
Walter Roberson le 24 Jan 2022
There happens to be a unique solution. But notice that I did not use fmincon()
syms x [1 4]
eqn = [sqrt( (101 - x(1)).^2 + (16 - x(2)).^2 + (207 - x(3)).^2 ) + x(4) - 310.5685;
sqrt( (52 - x(1)).^2 + (21 - x(2)).^2 + (302 - x(3)).^2 ) + x(4) - 387.5097;
sqrt( (17 - x(1)).^2 + (53 - x(2)).^2 + (350 - x(3)).^2 ) + x(4) - 434.7066;
sqrt( (-15 - x(1)).^2 + (159 - x(2)).^2 + (208 - x(3)).^2 ) + x(4) - 341.25730]
eqn = 
sol = solve(eqn)
sol = struct with fields:
x1: 103822410932647867988108939361258584970909255712767107632984851/1956912675242977971478733823948770948256077913556186906492928 - (129051806647358847*2106559777848689611763319847455226230701878591815072007499937183516353063743909708404663119^(1/… x2: 426905901714079451496930566148879909559098800764964499621325585/3913825350485955942957467647897541896512155827112373812985856 - (136826147043425299*2106559777848689611763319847455226230701878591815072007499937183516353063743909708404663119^(1/… x3: 265396183855587512112924351704545980843661454136842211566905355/978456337621488985739366911974385474128038956778093453246464 - (88565665080818287*2106559777848689611763319847455226230701878591815072007499937183516353063743909708404663119^(1/2)… x4: 173764389483007670549038691540576895965144260875517/444950427491443854587199399236117403292173074432 - (46067*2106559777848689611763319847455226230701878591815072007499937183516353063743909708404663119^(1/2))/2224752137457219272935996996180587…
format long g
X1 = double(sol.x1)
X1 =
5.19673845646778
X2 = double(sol.x2)
X2 =
7.59542522463441
X3 = double(sol.x3)
X3 =
8.49082794634566
X4 = double(sol.x4)
X4 =
89.9901846810174

Connectez-vous pour commenter.

Catégories

En savoir plus sur Systems of Nonlinear Equations dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by