- Upsample the input data in the matrix xx_resamp by a factor of the integer p by inserting zeroes, where p is the upsampling factor.
- FIR filter the upsampled signal data with the impulse response sequence given in the vector or matrix bpf. This is a convolution operation.
- Downsample the result by a factor of the integer by throwing away samples, where q is the downsampling factor.
upfirdn increases number of samples
11 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
William Greenway
le 24 Jan 2022
Commenté : Pratyush Roy
le 31 Jan 2022
I'm trying to apply a bandpass filter to an audio sound that I am inputting into MATLAB. When I apply my bandpass filter to the audio sound then I find that the number of samples increases.
[xx,fs] = audioread('funk.wav');
% resample at 8000Hz
xx_resamp = resample(xx,8000,44100);
% Create bandpass filter
fsamp = 8000;
% f = (-0.5:.001:0.5)*fsamp;
fcuts = [0 20 230 250];
mags = [0 1 0];
devs = [0.01 0.05 0.01];
[n,Wn,beta,ftype] = kaiserord(fcuts,mags,devs,fsamp);
n = n + rem(n,2);
bpf = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');
% Apply bandpass filter using upfirdn
y = upfirdn(xx_resamp,bpf);
% Find length of sample at different stages
lengthy = length(y) %returns 172915
lengthxxresamp = length(xx_resamp) %returns 172021
lengthbpf = length(bpf) %returns 895
% interestingly 172021 + 895 == 172915
Why does applying bpf using upfirdn increase the number of samples?
0 commentaires
Réponse acceptée
Pratyush Roy
le 27 Jan 2022
Modifié(e) : Pratyush Roy
le 27 Jan 2022
Hi William,
As per my understanding, the output sequence after appyling the bandpass filter has a length different from that of the input sequence.
If the input is of length and the FIR filter is of length then the output in the step 2 will be of length (which happened in this case as well, since 172021 + 895 - 1 = 172915). The upsampling and downsampling factors for the function upfirdn is 1 by default, hence a workaround would be to change these values so that the output sequence has the desired length.
Hope this helps!
2 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Multirate Signal Processing dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!