Info

Cette question est clôturée. Rouvrir pour modifier ou répondre.

First element of vector becoming equal to last element automatically?!?

2 vues (au cours des 30 derniers jours)
atharva aalok
atharva aalok le 25 Jan 2022
Clôturé : atharva aalok le 25 Jan 2022
I am using the following code to solve the laplace equation.
The issue I am facing is that the first element of norm_err which I am setting to 1 is automatically being reset to the last element on each iteration of the while loop. Why is this happening?
clear; clc; close all;
%==================================================
% MAKE n LIST
n_list = [5, 10, 15];
%==================================================
% SOLVE LAPLACE EQUATION FOR EACH n
% PreAllocation
iterations = zeros(1, length(n_list));
for k = 1:length(n_list)
% Keep Track of the iterations
k
%==================================================
% MAKE A MATRIX TO HOLD AN n x n GRID
n = n_list(k);
% actual_grid = zeros(n, n);
%==================================================
% INITIALIZE THE GRID
% iterated_grid = zeros(n, n);
amplitude = 1;
iterated_grid = amplitude * rand(n, n);
%==================================================
% SET BOUNDARY CONDITIONS
x0 = 0;
y0 = 0;
xf = 1;
yf = 1;
xx = linspace(x0, xf, n);
yy = linspace(y0, yf, n);
delta_x = (xf - x0) / (n - 1);
delta_y = (yf - y0) / (n - 1);
[X, Y] = meshgrid(xx, yy);
actual_grid = X.^2 - Y.^2;
% Set boundary of iterated grid
iterated_grid(1, :) = actual_grid(1, :);
iterated_grid(length(yy), :) = actual_grid(length(yy), :);
iterated_grid(:, 1) = actual_grid(:, 1);
iterated_grid(:, length(xx)) = actual_grid(:, length(xx));
%==================================================
% SET AVERAGE VALUE FOR EACH POINT, ITERATE N TIMES
tolerance = 1e-6;
copy_grid = iterated_grid;
norm_err{k}(1) = 1;
iterations(k) = 0;
while norm_err{k}(iterations(k) + 1) > tolerance
iterations(k) = iterations(k) + 1;
% Run the iteration through the interior of the matrix
iterated_grid(2:end-1, 2:end-1) = (0.25) * (iterated_grid(1:end-2, 2:end-1) + iterated_grid(3:end, 2:end-1) + iterated_grid(2:end-1, 1:end-2) + iterated_grid(2:end-1, 3:end) );
difference_grid = iterated_grid - copy_grid;
norm_err{k}(iterations + 1) = sqrt(sum(sum(difference_grid(2:end-1, 2:end-1).^2)) / ((n-2)*(n-2)));
copy_grid = iterated_grid;
end
format long
disp(norm_err{k}([1, 2, 3, end]));
end
k = 1
0.000000720425189 0.393537402267598 0.169809678519038 0.000000720425189
k =
2
0.000000950157662 0.423949692990376 0.289627916298907 0.000000950157662
k =
3
1.000000000000000 0.333282811338901 0.163630143300983 0.000000975445388

Réponses (0)

Cette question est clôturée.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by