Generalized eigenvectors not orthogonal

9 vues (au cours des 30 derniers jours)
Uri Cohen
Uri Cohen le 21 Nov 2014
Commenté : Matt J le 21 Nov 2014
I use eig to solve a generalized eigenvalues problem from two symmetric real matrices and resulting eigenvalues are not orthogonal even though there is no degeneration in the eigenvalues. Minimal code to reproduce this:
A=randn(10); B=randn(10);
A=A+A'; B=B+B';
[V,D]=eig(A,B);
diag(D)
V(:,1:6)'*V(:,1:6)
What do I miss?
  1 commentaire
Matt J
Matt J le 21 Nov 2014
I'm not aware of any result saying they should be orthogonal. The material here
mentions they will be B-orthogonal, but only if B is positive definite.

Connectez-vous pour commenter.

Réponses (1)

MA
MA le 21 Nov 2014
They are orthogonal, what is the problem?
clear all
close all
clc;
A=randn(10);
B=randn(10);
AA=A+A';
BB=B+B';
[V,D]=eig(AA);
[VV,DD]=eig(BB);
diag(D);
diag(DD);
V(:,1:10)'*V(:,1:10)
VV(:,1:10)'*VV(:,1:10)
  2 commentaires
MA
MA le 21 Nov 2014
in your case must be x=y:
clear all
clc;
A=randn(10);
B=randn(10);
AA=A+A';
BB=B+B';
[V,D]=eig(AA,BB);
%x=y
x=AA*V
y=BB*V*D
Uri Cohen
Uri Cohen le 21 Nov 2014
The eigenvectors are orthogonal, while the generalized eigenvectors are not, also in your example...
A=randn(10); AA=A+A';
B=randn(10); BB=B+B';
[V,D]=eig(AA);
V*V' % eye(10)
[V,D]=eig(AA, BB);
V*V' % not eye(10)

Connectez-vous pour commenter.

Catégories

En savoir plus sur Linear Algebra dans Help Center et File Exchange

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by