Randomized position of obstacles in Grid World
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello everyone!
I'm working on training a Q-learning agent using a standard 5x5 gridworld environment. I would like to implement in my environment obstacles such that they change at every episode in the training without ever coinciding with the target state of course. Anyone got any intel?
Here is my code:
GW = createGridWorld(5,5);
GW.CurrentState = '[1,1]';
GW.TerminalStates = '[3,3]';
GW.ObstacleStates = ["[3,2]";"[2,2]";"[2,3]";"[2,4]"; "[3,4]"];
updateStateTranstionForObstacles(GW);
nS = numel(GW.States);
nA = numel(GW.Actions);
GW.R = -1*ones(nS,nS,nA);
% GW.R(state2idx(GW,"[2,4]"),state2idx(GW,"[4,4]"),:) = 5;
GW.R(:,state2idx(GW,GW.TerminalStates),:) = 10;
env = rlMDPEnv(GW)
env.ResetFcn = @() 1;
rng(0)
qTable = rlTable(getObservationInfo(env),getActionInfo(env));
qRepresentation = rlQValueRepresentation(qTable,getObservationInfo(env),getActionInfo(env));
qRepresentation.Options.LearnRate = 1;
agentOpts = rlQAgentOptions;
agentOpts.EpsilonGreedyExploration.Epsilon = .04;
qAgent = rlQAgent(qRepresentation,agentOpts);
%training
trainOpts = rlTrainingOptions;
trainOpts.MaxStepsPerEpisode = 50;
trainOpts.MaxEpisodes= 200;
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 11;
trainOpts.ScoreAveragingWindowLength = 30;
doTraining = true;
if doTraining
% Train the agent.
trainingStats = train(qAgent,env,trainOpts);
else
% Load the pretrained agent for the example.
load('basicGWQAgent.mat','qAgent')
end
plot(env)
env.Model.Viewer.ShowTrace = true;
env.Model.Viewer.clearTrace;
sim(qAgent,env)
1 commentaire
Réponses (1)
Voir également
Catégories
En savoir plus sur Fuzzy Logic Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!