Info

Cette question est clôturée. Rouvrir pour modifier ou répondre.

Bit Error Rate High Values

1 vue (au cours des 30 derniers jours)
Kawther
Kawther le 1 Déc 2014
Clôturé : MATLAB Answer Bot le 20 Août 2021
Dear All,
I am using this code to find the bit error rate for the Kmeans clustering algorithm for receving a QPSK modulated data. Running the code high BER values are obtained (something more than 80). Can anyone help me with that ASAP.
clear all
clc
T=[ 2+2*i 2-2*i -2+2*i -2-2*i];
A=randn(150,2)+2*ones(150,2); C=randn(150,2)-2*ones(150,2);
B=randn(150,2)+2*ones(150,2); F=randn(150,2)-2*ones(150,2);
D=randn(150,2)+2*ones(150,2); G=randn(150,2)-2*ones(150,2);
E=randn(150,2)+2*ones(150,2); H=randn(150,2)-2*ones(150,2);
X = [A; B; D; C; F; E; G; H];
for k=1:5
[idx, centroids] = kmeans(X, k, 'Replicates', 20);
x = X(:,1);
y = X(:,2);
BER=[];
for nn=1:4
ber=0;
gt = zeros(1,4);
for idx = 1 : 4
[dummy,gt(idx)] = min(sum(bsxfun(@minus, [real(T(idx)), imag(T(idx))],...
centroids).^2, 2));
end
randn('seed',123);
rand_ind = randi(4, 10, 1);
test_sequence = T(rand_ind);
gt_labels = gt(rand_ind);
x = real(test_sequence).*(nn*randn(1, 10));
y = imag(test_sequence).*(nn*randn(1, 10));
labels = zeros(1, 10);
for idx = 1 : 10
[dummy,labels(idx)] = min(sum(bsxfun(@minus, [x(idx), y(idx)],...
centroids).^2, 2));
end
ber = sum(labels ~= gt_labels) / 10 * 100;
BER=[BER ber];
end
plot(nn,BER)
end
Thank you very much. Kawther

Réponses (0)

Cette question est clôturée.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by