how to run principal component analysis in a 3D matrix
20 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hugo
le 21 Fév 2022
Réponse apportée : Image Analyst
le 22 Fév 2022
Hi,
I am trying to run principal component analysis, pca() function to a 3D matrix. It does not work and I think it only works with 2D matrixes. Is there any way to circunvent this limitation?
Thank you,
Best regards,
0 commentaires
Réponse acceptée
AndresVar
le 21 Fév 2022
Modifié(e) : AndresVar
le 21 Fév 2022
You can reshape the matrix to 2D and then when you get results convert it back to the orginal dimensions if needed
There tricky part is to choose how to reshape. But say 2 dimensions are data, and the third is time then
data3d = ones([2,2,3]);
data2d = reshape(data3d,[],size(data3d,3));
size(data2d)
so the columns become the new time dimension.
0 commentaires
Plus de réponses (1)
Image Analyst
le 22 Fév 2022
See my attached demo where I run it on a 3-D (true color) image. Adapt as needed.
0 commentaires
Voir également
Catégories
En savoir plus sur Dimensionality Reduction and Feature Extraction dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!