Simulating dependent normally distributed variables using copulas
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I created a model that simulates variables with kernel distributions connected by copula functions. (X and Y are series of ln returns)
It looks like this: kX = ksdensity(X,X,'function','cdf'); kY = ksdensity(Y,Y,'function','cdf'); [Rho,nu] = copulafit('t',[kX kY],'Method','ApproximateML'); r = copularnd('t',Rho,nu,100000); XX = r(:,1); YY = r(:,1); SX = ksdensity(X,XX,'function','icdf'); SY = ksdensity(Y,YY,'function','icdf'); SimX = a*exp(SX); SimY = b*exp(SY);
Now I wish to evaluate the results when modeling the variables as normally distributed. I can’t see what function can directly substitute ksdensity in the model. I was trying to do this with:
kX = normcdf(X); kY = normcdf(Y); [Rho,nu] = copulafit('t',[kX kY],'Method','ApproximateML'); r = copularnd('t',Rho,nu,100000); XX = r(:,1); YY = r(:,1); SX = norminv(X,XX); SY = norminv(Y,YY); SimX = a*exp(SX); SimY = b*exp(SY);
But is not working because norminv does not support the second argument with the copula function. I am seeing this right? What can I do?
Thank you very much,
0 commentaires
Réponses (1)
Tom Lane
le 17 Déc 2014
Consider formatting your question so the code is not wrapped into the text.
The syntax ksdensity(x,xx) computes a kernel density based on x, evaluated at xx. If you intend to use the standard normal distribution, I believe you want just norminv(xx) .
0 commentaires
Voir également
Catégories
En savoir plus sur Copula Distributions and Correlated Samples dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!