efficient variable circshift on 3D matrix
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Jona Gladines
le 2 Mar 2022
Réponse apportée : Jona Gladines
le 2 Mar 2022
Hello,
I have a working method of circularly shifting every 60 element vector in a 3D matrix A (300x300x60) over its corresponding value in 2D shift matrix B (300x300) which is relatively slow. I hope there is a faster method than the methods I currently have.
The shifting works as follows: If B(1,1) for example is 10, I want to shift A(1, 1, :) over 10 samples. Every value in B can be different.
My first approach was the following:
for i=1:size(B, 1)
for j=1:size(B, 2)
A(i, j, :) = circshift(A(i, j, :), B(i, j));
end
end
which works, but is relatively slow (0.2s). A second approach was to first reshape matrices A and B to 2D and 1D respectively and get rid of the nested for loop.
a = reshape(A, size(A, 1)*size(A, 2), size(A, 3))';
b = reshape(B, size(B, 1)*size(B, 2), 1);
for i = 1:length(b)
a(:, i) = circshift(a(:, i), b(i));
end
A = reshape(a', size(fm2, 1), size(fm2, 2), size(fm2, 3));
Which also works and is already little bit faster (0.1s).
Is there any other method to do this that would be much faster?
Thanks.
5 commentaires
Jan
le 2 Mar 2022
Modifié(e) : Jan
le 2 Mar 2022
Providing inputs would be very useful. It matters e.g. if the values of B are unique or if there are typically many same values. Optimizing code can exploit such patterns of the input.
For the test data DGM hast provided, this is twice as fast:
s = size(A);
a = reshape(A, [], s(3))';
b = reshape(B, [], 1);
ub = unique(b);
for i = 1:numel(ub)
m = (b == ub(i));
a(:, m) = circshift(a(:, m), ub(i));
end
A = reshape(a', s);
Réponse acceptée
Jan
le 2 Mar 2022
In this code:
s = size(A);
a = reshape(A, [], s(3))';
b = reshape(B, [], 1);
ub = unique(b);
for i = 1:numel(ub)
m = (b == ub(i));
a(:, m) = circshift(a(:, m), ub(i));
end
A = reshape(a', s);
40% of the computing time is spent for transposing. So if you store the data directly in a way, which let the operations work on the first dimension, the computing time is reduced also.
0 commentaires
Plus de réponses (1)
Voir également
Catégories
En savoir plus sur GPU Computing dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!