Non linear multiple curve fitting
17 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Dear all,
I'm trying to do the multiple nonlinear regression of some rheology curves (rheology.png). In particular, viscisty (visc.txt) changes with both temperature (T.txt) and shear rate (shear_rate.txt).
I would find a nonlinear regression of the form given in the attached 'regression_model.txt', where eta is the viscosity, T the temperature and gamma the shear rate.
but I'm having problems... I tried with nonlinfit, but this worked on only if a fix a given value of temperature (so, for a single variable the regression was ok).
How can I perform this regression in a simple way?
I would thanks in advance anyone who will contribute to help me
Best regards,
AP
0 commentaires
Réponse acceptée
Torsten
le 14 Mar 2022
Modifié(e) : Torsten
le 14 Mar 2022
Form a big matrix A:
First column: a vector of 1's
Second column: log(gamma) or log10(gamma) (depending on what "lg" means)
Third column: (log(gamma)).^2 or (log10(gamma)).^2 (depending on what "lg" means)
Fourth column: T*log(gamma) or T*log10(gamma) (depending on what "lg" means)
Fifth column: T
Sixth column: T.^2
and a big vector b, consisting of one column with the corresponding values for log(eta) or log10(eta) ( (depending on what lg means)
Then you can solve for the vector v =[ A0; A1; A11; A12; A2; A22] of constants in your model by typing
v = A\b.
5 commentaires
Torsten
le 14 Mar 2022
Modifié(e) : Torsten
le 15 Mar 2022
D1 = 7.40688e+12;
D2 = 373.15;
A1 = 30.62;
A2 = 51.6;
n = 0.2411;
tau = 72297.9;
T1 = 210+273.15;
T2 = 245+273.15;
T3 = 280+273.15;
shear_rate=(linspace(1e-1,1e4,1e5)).';
V = @(T) D1*exp(-(A1*(T-373.15))./(A2+(T-373.15)))./((1+((D1*exp(-(A1*(T-373.15))./(A2+(T-373.15)))).*shear_rate./tau)).^(1-n));
T = T1;
v1 = V(T1);
T = T2;
v2 = V(T2);
T = T3;
v3 = V(T3);
A = [ones(3*numel(shear_rate),1),...
[log10(shear_rate);log10(shear_rate);log10(shear_rate)],...
[(log10(shear_rate)).^2;(log10(shear_rate)).^2;(log10(shear_rate)).^2],...
[T1*log10(shear_rate);T2*log10(shear_rate);T3*log10(shear_rate)],...
[T1*ones(numel(shear_rate),1);T2*ones(numel(shear_rate),1);T3*ones(numel(shear_rate),1)],...
[T1^2*ones(numel(shear_rate),1);T2^2*ones(numel(shear_rate),1);T3^2*ones(numel(shear_rate),1)]];
b = [log10(v1);log10(v2);log10(v3)];
v0 = A\b
v = lsqnonlin(@(x)fun(x,A,b),v0)
T = T3;
aaaa = v(1) + v(2)*log10(shear_rate) + v(3)*(log10(shear_rate)).^2 + v(4)*T.*log10(shear_rate) + v(5)*T + v(6)*T^2;
aaaa = 10.^(aaaa);
%% Graphical representation
loglog(shear_rate,aaaa,'b-',shear_rate,v3,'r-');
function res = fun(x,A,b)
res = 10.^(A*x) - 10.^b;
end
Plus de réponses (0)
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!