I got two different graphs from my code like ODE89 and Eulers method. I need to compare the graphs in it.

2 vues (au cours des 30 derniers jours)
ODE89
clc
clear all
A0=1;
B0=3;
P0=0;
K=5*10^-5;
Yb=1;
Yp=0.15;
tspan = [0 43200];
[t,Y] = ode89(@(t,Y) odefun(t,Y, K, Yb, Yp),tspan, [A0;B0;P0]);
figure (1)
plot(t,Y(:,1))
figure (2)
plot(t,Y(:,2))
figure (3)
plot(t,Y(:,3))
function dYdt = odefun(t,Y,K,Yb,Yp)
dYdt = [(-K*Y(1)*Y(2));
(-Yb*(K*Y(1)*Y(2)));
(Yp*(K*Y(1)*Y(2)))];
end
Eulers
nsteps = 12;
t = zeros (nsteps,1);
A = zeros (nsteps,1);
B = zeros(nsteps, 1);
P = zeros(nsteps,1);
A(1) = 1;
B(1) = 3;
C(1) = 0;
K = 5*10^-5
for k = 2:13
t(k) = t(k-1)+3600
A(k) = A(k-1)+(-K*A(k-1)*B(k-1))*3600;
B(k) = B(k-1)+(-Yb*(K*A(k-1)*B(k-1)))*3600;
P(k)= P(k-1)+ Yp*(K*A(k-1)*B(k-1))*3600;
end
plot (t,A)
figure (1)
plot(t,A(:,1))
plot (t,B)
figure (2)
plot(t,B(:,1))
plot(t,P)
figure (3)
plot(t,P(:,1))
I need to compare the ODE89 graph of A,B and P with Euler's A,B and P
  2 commentaires
AndresVar
AndresVar le 14 Mar 2022
They look pretty similar, so to make it easier to draw comparisons you can plot the corresponding solutions on the same axis.
Maybe you can plot the percent differce on the right-hand side axis also.

Connectez-vous pour commenter.

Réponse acceptée

Davide Masiello
Davide Masiello le 15 Mar 2022
Modifié(e) : Davide Masiello le 15 Mar 2022
clc
clear all
%% ODE89
A0=1;
B0=3;
P0=0;
K=5*10^-5;
Yb=1;
Yp=0.15;
tspan = [0 43200];
[x,Y] = ode89(@(t,Y) odefun(t,Y, K, Yb, Yp),tspan, [A0;B0;P0]);
%% Euler
nsteps = 12;
t = zeros (nsteps,1);
A = zeros (nsteps,1);
B = zeros(nsteps, 1);
P = zeros(nsteps,1);
A(1) = 1;
B(1) = 3;
C(1) = 0;
K = 5*10^-5;
for k = 2:13
t(k) = t(k-1)+3600;
A(k) = A(k-1)+(-K*A(k-1)*B(k-1))*3600;
B(k) = B(k-1)+(-Yb*(K*A(k-1)*B(k-1)))*3600;
P(k)= P(k-1)+ Yp*(K*A(k-1)*B(k-1))*3600;
end
figure(1)
subplot(1,3,1)
plot (t,A,x,Y(:,1))
xlabel('t')
ylabel('A')
subplot(1,3,2)
plot (t,B,x,Y(:,2))
xlabel('t')
ylabel('B')
subplot(1,3,3)
plot(t,C,x,Y(:,3))
xlabel('t')
ylabel('P')
legend('ODE89','Euler','Location','Best')
function dYdt = odefun(t,Y,K,Yb,Yp)
dYdt = [(-K*Y(1)*Y(2));
(-Yb*(K*Y(1)*Y(2)));
(Yp*(K*Y(1)*Y(2)))];
end
  3 commentaires

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur 2-D and 3-D Plots dans Help Center et File Exchange

Produits


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by