Matlab simulation for planet motion
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Niklas Kurz
le 16 Mar 2022
Commenté : Niklas Kurz
le 17 Mar 2022
There were some attemps simulating planetary motion already, but I think mine is straightforward by solving and updating position via with Euler Cromers method:
t = 0;
while t < 10
pos1 = [1 2 3];
pos2 = [4 5 6];
m1 = 1;
m2 = 2;
G = 1;
r1 = pos1-pos2;
r2 = pos2-pos1;
F1 = G*m1*m2/norm(r1).^2.*r1/norm(r1);
F2 = G*m1*m2/norm(r2).^2.*r2/norm(r2);
dt = 0.1;
p1 = [0 100 0];
p2 = [0 100 0];
p1 = p1+F1.*dt;
p2 = p2+F2.*dt;
pos1 = pos1+p1/m1;
pos2 = pos2+p2/m2;
t = t+dt;
hold all;
plot3(pos1(1),pos1(2),pos1(3),'rx')
plot3(pos2(1),pos2(2),pos2(3),'bx')
end
However I don't really receive a plot of multiple data points, just 2 crosses remaining stationary. Also I get a 2-D plot even though I reverted to plot3
1 commentaire
KSSV
le 16 Mar 2022
You can change it to 3D using view.
plot3(pos1(1),pos1(2),pos1(3),'rx')
plot3(pos2(1),pos2(2),pos2(3),'bx')
view(3)
Réponse acceptée
James Tursa
le 16 Mar 2022
The initial condition for position and velocity need to be outside the loop, prior to loop entry.
Plus de réponses (1)
KSSV
le 16 Mar 2022
t = 0;
m1 = 1;
m2 = 2;
G = 1;
pos01 = [1 2 3];
pos02 = [4 5 6];
pos1 = zeros([],3) ;
pos2 = zeros([],3) ;
iter = 0 ;
while t < 10
iter = iter+1 ;
r1 = pos01-pos02;
r2 = pos02-pos01;
F1 = G*m1*m2/norm(r1).^2.*r1/norm(r1);
F2 = G*m1*m2/norm(r2).^2.*r2/norm(r2);
dt = 0.1;
p1 = [0 100 0];
p2 = [0 100 0];
p1 = p1+F1.*dt;
p2 = p2+F2.*dt;
pos1(iter,:) = pos01+p1/m1;
pos2(iter,:) = pos02+p2/m2;
pos01 = pos1(iter,:) ;
pos02 = pos2(iter,:) ;
t = t+dt;
end
figure
hold on
plot3(pos1(:,1),pos1(:,2),pos1(:,3),'rx')
plot3(pos2(:,1),pos2(:,2),pos2(:,3),'bx')
view(3)
Voir également
Catégories
En savoir plus sur Earth and Planetary Science dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!