Bisection method relative error

9 vues (au cours des 30 derniers jours)
Sazcl
Sazcl le 17 Mar 2022
Commenté : Jan le 2 Août 2023
Hello everyone, I don't use MATLAB very well. I have a question. If you can help, I'd appreciate.
I have a function below that I have to find its roots using bisection method. I want the for loop to stop on the point where relative error is lower than %0.05. I couldn't understand how I can define n.
f=@(x) log(x)-cos(x)-exp(-x);
x1=1;
x2=2;
xmid=(x1+x2)/2
for i=1:n;
if (f(xmid)*f(x2))<0
x1=xmid;
else
x2=xmid;
end
xmid=(x1+x2)/2;
end
fprintf('The root is: %3.8g\n',xmid)

Réponse acceptée

Mohammed Hamaidi
Mohammed Hamaidi le 17 Mar 2022
Modifié(e) : Mohammed Hamaidi le 18 Mar 2022
Hi
Just use "while" loop with your condition as follows:
f=@(x) log(x)-cos(x)-exp(-x);
x1=1;
x2=2;
xmid=(x1+x2)/2;
while (x2-x1)>0.0005
if (f(xmid)*f(x2))<0
x1=xmid;
else
x2=xmid;
end
xmid=(x1+x2)/2;
end
fprintf('The root is: %3.8g\n',xmid)
  4 commentaires
Sazcl
Sazcl le 17 Mar 2022
It really helped, I got it done.
Thank you both.
Jan
Jan le 18 Mar 2022
If this answer solves the problem, please accept it.

Connectez-vous pour commenter.

Plus de réponses (1)

John
John le 31 Juil 2023
function [p, pN] = Bisection_371(a,b,N, tol)
if f(a)*f(b) > 0
disp("IVT does not guarantee a root in [a,b]")
elseif f(a)*f(b) == 0
disp("The root is either a or b")
else
for n = 1:N
p = (a+b)/2;
pN(n) = p;
if f(p) == 0 || (b-a)/2 < tol
break
elseif f(p)*f(a) < 0
b = p;
else
a = p;
end
end
end
end
%f = @(x)x^2 - 1;
function y = f(x)
y = x^2 - 1;
end
  1 commentaire
Jan
Jan le 2 Août 2023
For numerical reasons it is rather unlikely that the condiotion f(p) == 0 is met exactly. Use a tolerance instead.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Matrix Indexing dans Help Center et File Exchange

Tags

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by