How to design a single layer perceptron with MATLAB built-in functions/nets/Apps?
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Suppose I have 1000 images of 512 pixels each. I want to design a single layer perceptron and to track the accuracy of the validation/test and the train datasets, but I don't know where to start? Is there a MATLAB built-in function where I could do it? Or how do I write it in code?
% % Data Splitting
[setTrain, setTest] = partition(Images, [0.8, 0.2], 'randomized');
%% Defining the perceptron
n=1;
weights(:,n)=rand(1,1000);
eta=0.1;
epochs=50;
for i=1:epochs
for j=1:length(Images)
v=weights(:,n)'*x(:,j);
function out=hardlimit(v)
for i=1:numel(v)
if v(i)<0
out(i)=0;
else
out(i)=1;
end
end
error_train = 1 ;
error_test = 1;
error_perc_test=1;
0 commentaires
Réponses (1)
Ayush Aniket
le 13 Juin 2025
Modifié(e) : Ayush Aniket
le 13 Juin 2025
You can design a single-layer perceptron in MATLAB using built-in functions from the Deep Learning Toolbox. MATLAB provides functions like feedforwardnet, perceptron and train to simplify the process.Refer the code snippet below:
% 1. Load and Split Data
[setTrain, setTest] = partition(Images, [0.8, 0.2], 'randomized');
% 2. Define the Perceptron Model
net = perceptron;
% 3. Train the Model
net = train(net, setTrain, labelsTrain);
% 4. Evaluate Accuracy
predictions = net(setTest);
accuracy = sum(predictions == labelsTest) / numel(labelsTest);
0 commentaires
Voir également
Catégories
En savoir plus sur Define Shallow Neural Network Architectures dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!