Trying to solve 2 dimensional Partial differential equation using Finite Difference Method

27 vues (au cours des 30 derniers jours)
Currently I study about finite difference for 1d and 2d partial differential equation. I finish my code by trying to follow the algorithm my lecturer gave to me. The difference is, I add some conditional for some nodes which are located at boundaries (at the top and the right where the value supposedly be 1, not 0). But why my graph seems wrong? This method seems similar to Sandip Mazumder book and Youtube tutorial.
clc; clear all; close all
Ny=30;Nx=30;
dx=0.01;dy=0.01;
xa=0:dx:(Nx-1)*dx;
ya=0:dy:(Ny-1)*dy;
yb=(Ny-1)*dy:-dy:0;
xb=(Nx-1)*dx:-dx:0;
a=1/(dx)^2; c=1/(dy^2);
b=-2*(a+c);
%Create matrices A, B and solution
[A,B]= matriks(a, b,c, Nx, Ny);
solx =inv(A)*B;
for ii=1:Ny;
for jj=1:Nx;
k=(jj-1)*Ny+ii;
sol(ii, jj)=solx(k);
end
end
%Showing the graph
[X, Y] = meshgrid(xb, yb);
surface(X, Y, sol); colormap
shading interp; axis ('equal')
xlim([0 max(xa)]);ylim([0 max(ya)])
xlabel('Sumbu X'); ylabel('Sumbu Y')
function [A,B]=matriks(a,b,c,Nx,Ny)
B=zeros(Nx*Ny, 1);
A=eye(Nx*Ny);
dx=0.01
x=0:dx:1
y=0:dx:1
for ii=1:Nx;
for jj=1:Ny
if (ii>1) && (ii<Nx) && (jj>1) && (jj<Ny) % Insides
k=(jj-1)*Ny+ii;
B(k,1)=0;
A(k,k)=b;
A(k, k-1)=a;A(k,k+1)=a;
A(k, k-Ny)=c;A(k, k+Ny)=c;
elseif (jj==Ny) && (ii>1) && (ii<Nx) % Top boundary
k=(jj-1)*Ny+ii;
B(k,1)=y(jj);
A(k,k)=b;
A(k, k-1)=a;A(k,k+1)=a;
A(k, k-Ny)=c;
elseif ( ii==Nx ) &&( jj<Ny) && ( jj > 1 ) % Right boundary
k=( jj - 1 )*Ny+ii;
B( k , 1 )=x(jj);
A( k , k )=b;
A( k, k - 1 )=a;
if k < (Ny*Nx)-Ny
A( k , k - Ny )=c;A(k, k+Ny)=c;
end
end
end
end
end

Réponses (2)

Torsten
Torsten le 21 Mar 2022
Modifié(e) : Torsten le 21 Mar 2022
For dx = dy = 0.01, Nx = Ny = 101, not 30 in your code. I just realized this after setting up the code below.
dx = 0.01;
dy = 0.01;
x = 0:dx:1;
y = 0:dy:1;
nx = numel(x);
ny = numel(y);
a =1/dx^2;
c =1/dy^2;
b =-2*(a+c);
A = zeros(nx*ny,nx*ny);
B = zeros(nx*ny,1);
% Boundaries
% Boundary values at y = 0
for ix = 1:nx
A(ix,ix) = 1.0;
B(ix) = 0.0;
end
% Boundary values at x = 0
for iy = 2:ny-1
k = nx*(iy-1) + 1;
A(k,k) = 1.0;
B(k) = 0.0;
end
% Boundary values at x = 1
for iy = 2:ny-1
k = nx*iy;
A(k,k) = 1.0;
B(k) = y(iy);
end
% Boundary values at y = 1
for ix = 1:nx
k = nx*(ny-1) + ix;
A(k,k) = 1.0;
B(k) = x(ix);
end
% Inner grid points
for iy = 2:ny-1
for ix = 2:nx-1
k = (iy-1)*nx + ix;
A(k,k) = b;
A(k,k+1) = a;
A(k,k-1) = a;
A(k,k+nx) = c;
A(k,k-nx) = c;
end
end
u = A\B;
%u
U = zeros(nx,ny);
for iy = 1:ny
for ix = 1:nx
k = (iy-1)*nx + ix;
U(ix,iy) = u(k);
end
end
[X,Y] = meshgrid(x,y);
surf(X, Y, U);
  5 commentaires
Torsten
Torsten le 22 Mar 2022
Modifié(e) : Torsten le 22 Mar 2022
Which iterations do you mean ? The loops to set up A and B ?
Tristofani Agasta
Tristofani Agasta le 23 Mar 2022
Both A and B, I thought I can put all nodes on each boundary in same 'for' loop. I never thought I can use for ii and for jj for each boundary separately, with different k index

Connectez-vous pour commenter.


Torsten
Torsten le 27 Sep 2023
For those who might be interested in a finite volume code for the equation above.
Skerdi Hymeraj asked for such code, but deleted the given answer.
dx = 0.01;
dy = 0.01;
x = dx/2:dx:1-dx/2;
y = dy/2:dy:1-dy/2;
nx = numel(x);
ny = numel(y);
%A = zeros(nx*ny);
b = zeros(nx*ny,1);
index = 0;
% Points in contact to boundaries
% i = 1, j = 1
k = 1;
index = index + 1;
irc(index) = k;
icc(index) = k;
mat(index) = ( -dy/dx - dy/(dx/2) - dx/dy - dx/(dy/2) );
index = index + 1;
irc(index) = k;
icc(index) = k+1;
mat(index) = dy/dx;
index = index + 1;
irc(index) = k;
icc(index) = k+nx;
mat(index) = dx/dy;
%A(k,k) = ( -dy/dx - dy/(dx/2) - dx/dy - dx/(dy/2) );
%A(k,k+1) = dy/dx;
%A(k,k+nx) = dx/dy;
b(k) = -dy/(dx/2) * bcfun(0,y(1)) -dx/(dy/2) * bcfun(x(1),0);
% i = nx, j = 1
k = nx;
index = index + 1;
irc(index) = k;
icc(index) = k;
mat(index) = ( -dy/(dx/2) - dy/dx - dx/dy - dx/(dy/2) );
index = index + 1;
irc(index) = k;
icc(index) = k-1;
mat(index) = dy/dx;
index = index + 1;
irc(index) = k;
icc(index) = k + nx;
mat(index) = dx/dy;
%A(k,k) = ( -dy/(dx/2) - dy/dx - dx/dy - dx/(dy/2) );
%A(k,k-1) = dy/dx;
%A(k,k+nx) = dx/dy;
b(k) = -dy/(dx/2) * bcfun(1,y(1)) -dx/(dy/2) * bcfun(x(nx),0);
% i = 1, j = ny
k = (ny-1)*nx+1;
index = index + 1;
irc(index) = k;
icc(index) = k;
mat(index) = (-dy/dx - dy/(dx/2) - dx/(dy/2) - dx/dy);
index = index + 1;
irc(index) = k;
icc(index) = k+1;
mat(index) = dy/dx;
index = index + 1;
irc(index) = k;
icc(index) = k-nx;
mat(index) = dx/dy;
%A(k,k) = (-dy/dx - dy/(dx/2) - dx/(dy/2) - dx/dy);
%A(k,k+1) = dy/dx;
%A(k,k-nx) = dx/dy;
b(k) = -dy/(dx/2) * bcfun(0,y(ny)) -dx/(dy/2) * bcfun(x(1),1);
% i = nx, j = ny
k = nx*ny;
index = index + 1;
irc(index) = k;
icc(index) = k;
mat(index) = (-dy/(dx/2) - dy/dx - dx/(dy/2) - dx/dy);
index = index + 1;
irc(index) = k;
icc(index) = k-1;
mat(index) = dy/dx;
index = index + 1;
irc(index) = k;
icc(index) = k-nx;
mat(index) = dx/dy;
%A(k,k) = (-dy/(dx/2) - dy/dx - dx/(dy/2) - dx/dy);
%A(k,k-1) = dy/dx;
%A(k,k-nx) = dx/dy;
b(k) = -dy/(dx/2) * bcfun(1,y(ny)) -dx/(dy/2) * bcfun(x(nx),1);
% 1 < i < nx, j = 1
for ix = 2:nx-1
k = ix;
index = index + 1;
irc(index) = k;
icc(index) = k;
mat(index) = -dy/dx - dy/dx - dx/dy -dx/(dy/2);
index = index + 1;
irc(index) = k;
icc(index) = k-1;
mat(index) = dy/dx;
index = index + 1;
irc(index) = k;
icc(index) = k+1;
mat(index) = dy/dx;
index = index + 1;
irc(index) = k;
icc(index) = k+nx;
mat(index) = dx/dy;
%A(k,k) = -dy/dx - dy/dx - dx/dy -dx/(dy/2);
%A(k,k-1) = dy/dx;
%A(k,k+1) = dy/dx;
%A(k,k+nx) = dx/dy;
b(k) = -dx/(dy/2) * bcfun(x(ix),0);
end
% 1 < i < nx, j = ny
for ix = 2:nx-1
k = (ny-1)*nx + ix;
index = index + 1;
irc(index) = k;
icc(index) = k;
mat(index) = -dy/dx -dy/dx -dx/(dy/2) -dx/dy;
index = index + 1;
irc(index) = k;
icc(index) = k-1;
mat(index) = dy/dx;
index = index + 1;
irc(index) = k;
icc(index) = k+1;
mat(index) = dy/dx;
index = index + 1;
irc(index) = k;
icc(index) = k-nx;
mat(index) = dx/dy;
%A(k,k) = -dy/dx -dy/dx -dx/(dy/2) -dx/dy;
%A(k,k-1) = dy/dx;
%A(k,k+1) = dy/dx;
%A(k,k-nx) = dx/dy;
b(k) = -dx/(dy/2) * bcfun(x(ix),1);
end
% i = 1, 1 < j < ny
for iy = 2:ny-1
k = 1 + (iy-1)*nx;
index = index + 1;
irc(index) = k;
icc(index) = k;
mat(index) = -dy/dx - dy/(dx/2) - dx/dy - dx/dy;
index = index + 1;
irc(index) = k;
icc(index) = k+1;
mat(index) = dy/dx;
index = index + 1;
irc(index) = k;
icc(index) = k-nx;
mat(index) = dx/dy;
index = index + 1;
irc(index) = k;
icc(index) = k+nx;
mat(index) = dx/dy;
%A(k,k) = -dy/dx - dy/(dx/2) - dx/dy - dx/dy;
%A(k,k+1) = dy/dx;
%A(k,k-nx) = dx/dy;
%A(k,k+nx) = dx/dy;
b(k) = -dy/(dx/2) * bcfun(0,y(iy));
end
% i = nx, 1 < j < ny
for iy = 2:ny-1
k = nx*iy;
index = index + 1;
irc(index) = k;
icc(index) = k;
mat(index) = -dy/(dx/2) - dy/dx - dx/dy - dx/dy;
index = index + 1;
irc(index) = k;
icc(index) = k-1;
mat(index) = dy/dx;
index = index + 1;
irc(index) = k;
icc(index) = k-nx;
mat(index) = dx/dy;
index = index + 1;
irc(index) = k;
icc(index) = k+nx;
mat(index) = dx/dy;
%A(k,k) = -dy/(dx/2) - dy/dx - dx/dy - dx/dy;
%A(k,k-1) = dy/dx;
%A(k,k-nx) = dx/dy;
%A(k,k+nx) = dx/dy;
b(k) = -dy/(dx/2) * bcfun(1,y(iy));
end
% Inner grid points
% 1 < ix < nx, 1 < iy < ny
for ix = 2:nx-1
for iy = 2:ny-1
k = (iy-1)*nx + ix;
index = index + 1;
irc(index) = k;
icc(index) = k;
mat(index) = -dy/dx - dy/dx - dx/dy - dx/dy;
index = index + 1;
irc(index) = k;
icc(index) = k+1;
mat(index) = dy/dx;
index = index + 1;
irc(index) = k;
icc(index) = k-1;
mat(index) = dy/dx;
index = index + 1;
irc(index) = k;
icc(index) = k+nx;
mat(index) = dx/dy;
index = index + 1;
irc(index) = k;
icc(index) = k-nx;
mat(index) = dx/dy;
%A(k,k) = -dy/dx - dy/dx - dx/dy - dx/dy;
%A(k,k+1) = dy/dx;
%A(k,k-1) = dy/dx;
%A(k,k+nx) = dx/dy;
%A(k,k-nx) = dx/dy;
b(k) = 0;
end
end
A = sparse(irc,icc,mat,nx*ny,nx*ny);
u = A\b;
%u
U = zeros(nx,ny);
for iy = 1:ny
for ix = 1:nx
k = (iy-1)*nx + ix;
U(ix,iy) = u(k);
end
end
[X,Y] = meshgrid(x,y);
surf(X, Y, U, 'EdgeColor','none');
end
function bc_value = bcfun(x,y)
if x==0 || y == 0
bc_value = 0;
return
end
if x==1
bc_value = y;
return
end
if y==1
bc_value = x;
return
end
end

Produits


Version

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by