solving PDE with boundary conditions involving derivative
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi!
I'm trying to solve a PDE problem with boundary conditions: C(0,t)=Cf & dC(L,t)dz=0
My final goal is to find the C(z,t) and L.
Here is my full code for now:
Da=findDa(d_p,u,epsilon,Rho,eta);%function
constant=findConstant(epsilon, q_max, k_eq);
% z=findz(u, Da,Cf);
z = linspace(0,0.1,50);
t = linspace(0,1,50);
m = 0;
eqn = @(z,t,C,dCdz) setPDE(z,t,C,dCdz,Da,constant,u);
sol = pdepe(m,eqn,@findIC,@setBC,z,t);
C = sol(:,:,1);
function constantVal=findConstant(epsilon, q_max, k_eq)
constantVal=(1+(1-epsilon)/epsilon*q_max*k_eq);
end
function Daval=findDa(d_p,u,epsilon,Rho,eta)
Re=u*d_p*Rho/eta;
Daval=d_p*u*epsilon/(0.339+0.033*Re^0.48);
end
function [g,f,s]=setPDE(z,t,C,dCdz,Da,constant,u)
g=1;
f=Da/constant*dCdz;
s=-u/constant*dCdz;
end
function C0=findIC(z)
C0=0;
end
function [pl,ql,pr,qr]=setBC(zl,Cl,zr,Cr,t)
...
end
0 commentaires
Réponse acceptée
Torsten
le 26 Mar 2022
Cf = ...;
bcfcn = @(zl,Cl,zr,Cr,t)setBC(zl,Cl,zr,Cr,t,Cf);
sol = pdepe(m,eqn,@findIC,bcfcn,z,t);
function [pl,ql,pr,qr]=setBC(zl,Cl,zr,Cr,t,Cf)
pl = Cl - Cf;
ql = 0.0;
pr = 0.0;
qr = 1.0;
end
3 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur PDE Solvers dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!