How can i solve this?

1 vue (au cours des 30 derniers jours)
B A
B A le 2 Jan 2015
Commenté : B A le 2 Jan 2015
How can I solved this....:( Please help ... The motion of two bodies under mutual gravitational attraction is described by the following equations derived from Newton's law of Motion.
x’’(t) = - α^2*x(t)/R(t),
y’’(t) = - α^2*y(t)/R(t),
where x(t) and y(t) denote the position of one body in a coordinate system with the origin fixed in the other body,R(t) = (x^2(t)+ y^2(t))^3/2 , and α is a constant.
x(0)=1-β , x'(0)=0
y(0)=0, y'(0)=α sqr((1+β)/(1-β))
Here β is a constant, 0≤β<1. The orbit is then an ellipse with eccentricity β and one focus at the origin. Choose α = π/4 and β =0.9.
Write a program based on the classical Runge-Kutta 4-th -ordered method in Matlab. Test your code with a fixed step size h on the problem above.For the set of printout point t(k)= k/2 , k=0,....24 print out the position and for all the steps taken plot the position (x(t), y(t)), velocity (x'(t),y'(t))and acceleration(x"(t),y"(t)). Verify the theoretical dependence of accuracy on the step size , h .Note then the solution is periodic , with the period P=8.Observe how close the bodies come to each other.

Réponse acceptée

mouh nyquist
mouh nyquist le 2 Jan 2015
you can found the answer in this book "it is free see in google " R. V. Dukkipati, "Solving Vibration Analysis Problems using MATLAB"
  1 commentaire
B A
B A le 2 Jan 2015
I can't find it in free version :(

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by