Technically, if is plotted by a function f(x) with a uniform step size h, then you can use the nabla = gradient(f)/h to compute the slope of f(x).
To find the gradient of the transient response, you need to pick a point in that region, for example, , and then find the index idx that is nearest to, or exactly at this point.
You can try @Faraz Hedayati's code or this code. Both are good learning experiences for you
h = 0.01;
x = 0:h:10;
y = 1 - exp(-x/sqrt(2)).*(cos(x/sqrt(2)) + sin(x/sqrt(2)));
plot(x, y)
hold on
nabla = gradient(y)/h;
[M, idx] = max(nabla);
plot(x(idx), y(idx), 'o', 'linewidth', 1.5)
m = nabla(idx) % slope at point p
c = y(idx) - m*x(idx) % y-intercept
z = m*x + c; % line equation at point p
plot(x, z, 'linewidth', 1.5)
hold off
grid on
xlabel('x')
ylabel('y')
title('y = f(x) and the tangent line at the steepest slope')
legend('function f(x)', 'the point at f(p)', 'tangent line', 'location', 'best')
Result:
Note: If the spread of the data points are not uniform, then you probably need to use the interpolation technique, interp1().
Impossible de terminer l’action en raison de modifications de la page. Rechargez la page pour voir sa mise à jour.
Translated by
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.