Finding gradient of a part of a graph

41 vues (au cours des 30 derniers jours)
Yen Tien Yap
Yen Tien Yap le 9 Avr 2022
Modifié(e) : Tala le 9 Avr 2022
May I know how to find the gradient of the first linear part? What function should I use?

Réponse acceptée

Sam Chak
Sam Chak le 9 Avr 2022
Modifié(e) : Sam Chak le 9 Avr 2022
Technically, if is plotted by a function f(x) with a uniform step size h, then you can use the nabla = gradient(f)/h to compute the slope of f(x).
To find the gradient of the transient response, you need to pick a point in that region, for example, , and then find the index idx that is nearest to, or exactly at this point.
You can try @Faraz Hedayati's code or this code. Both are good learning experiences for you
h = 0.01;
x = 0:h:10;
y = 1 - exp(-x/sqrt(2)).*(cos(x/sqrt(2)) + sin(x/sqrt(2)));
plot(x, y)
hold on
nabla = gradient(y)/h;
[M, idx] = max(nabla);
plot(x(idx), y(idx), 'o', 'linewidth', 1.5)
m = nabla(idx) % slope at point p
c = y(idx) - m*x(idx) % y-intercept
z = m*x + c; % line equation at point p
plot(x, z, 'linewidth', 1.5)
hold off
grid on
xlabel('x')
ylabel('y')
title('y = f(x) and the tangent line at the steepest slope')
legend('function f(x)', 'the point at f(p)', 'tangent line', 'location', 'best')
Result:
Note: If the spread of the data points are not uniform, then you probably need to use the interpolation technique, interp1().

Plus de réponses (1)

Tala
Tala le 9 Avr 2022
Modifié(e) : Tala le 9 Avr 2022
A=your signal; dx=epsilon(2)-epsilon(1); % assuming the sampling frequency is constant
[M,I] = max(A);
B=diff(A(1:I))./dx;

Catégories

En savoir plus sur Graph and Network Algorithms dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by