Secant method numerical analysis

9 vues (au cours des 30 derniers jours)
Andrew242
Andrew242 le 12 Avr 2022
How Find all intersections of a function using secant method? What is the code

Réponses (1)

Sam Chak
Sam Chak le 12 Avr 2022
This is just a sample code using the Secant Method to find the root of the Kepler’s equation:
function Demo_Secant
close all
clc
% Solving Kepler’s equation: E – e*sin(E) = M
f = @(x) x - 0.37255*sin(x) - 0.8828;
[x, iter] = SecaMeth(f, -pi, pi)
end
function [root, n] = SecaMeth(f, x1, x2, epsilon, N)
% f(x1) and f(x2) are initial points for drawing the secant line connecting them
% epsilon is the tolerance of convergence (default 1e-6),
% N is the maximum number of iterations (default 30),
if nargin < 5 || isempty(N), N = 30; end
if nargin < 4 || isempty(epsilon), epsilon = 1e-6; end
x = zeros(1, N+1);
for n = 2:N
if x1 == x2
root = 'failure';
return
end
x(1) = x1;
x(2) = x2;
x(n+1) = x(n) - ( ( x(n) - x(n-1) )/( f(x(n)) - f(x(n-1)) ) )*f(x(n));
if abs(x(n+1) - x(n)) < epsilon
root = x(n+1);
return
end
end
end
Result:
x =
1.2345
iter =
7
Hope this is helpful for you to modify the code that suits your needs.

Catégories

En savoir plus sur Programming dans Help Center et File Exchange

Produits


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by