Separating table data by year
18 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
From a given table of data from 1900 to 2017 of low temperatures i want to separate by year then run functions to find the number of days per year where temperatures were lower than the average over the period of 1900-2017.
below is what was provided as the example, but im having trouble separating out specified years to work on
gDays = findgroups(day(BostonTemps.Date, 'dayofyear'));
avgTmin = splitapply(@mean, BostonTemps.Tmin, gDays);
stdTmin = splitapply(@std, BostonTemps.Tmin, gDays);
[gYears,years] = findgroups(year(BostonTemps.Date));
0 commentaires
Réponses (1)
Scott MacKenzie
le 22 Avr 2022
Modifié(e) : Scott MacKenzie
le 22 Avr 2022
Here's what I put together using random temperatures between 30 and 100 over the period of interest. Since the temperatures are random, about half of the 365 or 366 days each year are lower than the period average.
% test data (random hourly temperatures from 1900 to 2017)
dt1 = datetime('1900-01-01', 'InputFormat','yyyy-MM-dd');
dt2 = datetime('2017-12-31', 'InputFormat','yyyy-MM-dd');
dt = (dt1:hours(1):dt2)';
tmp = randi([30 100], length(dt),1); % random temperatures between 30 and 100
% organize in timetable
TT = timetable(dt, tmp);
% retime to get daily mean temperature
TT1 = retime(TT, 'daily', 'mean');
% average daily temperature for the period 1900 to 2017
epochAverage = mean(TT1.tmp);
% add a column flagging each day where the average temperature < epochAverage
TT1.LowerThanAverage = TT1.tmp < epochAverage;
% retime to get the number of days each year with temperature < epochAverage
TT2 = retime(TT1, 'yearly', 'sum');
epochAverage % average temperature over the period of interest
TT2([1:5 (end-4):end], 2) % results for first 5 years and last 5 years
0 commentaires
Voir également
Catégories
En savoir plus sur Dates and Time dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!