Using Runge-Kutta algorithm to solve second order ODE
27 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
For this task I need to create a program which manually uses the RK algorithm to solve a second order ODE. I'm trying to get my head around it but I think I'm going at it in the wrong way.
My original function is
with given values for m, F0 and w, so I have rearranged it to x'' = 50sin(8*pi*t)-x'-50x
I've then switched x' for y and rearranged to get 50sin(8*pi*t) = y' + y + 50x and this is what I'm using in the script. I need to plot x(t) and y(t) but at this point I'm just trying to find values for x and y over time.
The method I've used to get this far is below the code. Excuse my poor code. Thanks in advance.
PS I'm not allowed to use a function like ode45 to solve it for me.
close all; clear; clc;
t=0;x=0;y=0;
dy=myfunction(t,x,y)
x0=0;y0=0
h = 0.5;
for t=0:5.5
dx1 = h*y
dy1 = h*dy
dx2 = h*(y+(dy1/2))
dy2 = h*myfunction(t+(h/2),x+(dx1/2),y+(dy1/2))
dx3 = h*(y+(dy2/2))
dy3 = h*myfunction(t+(h/2),x+(dx2/2),y+(dy1/2))
dx4 = h*(y+dy3)
dy4 = h*myfunction(t+h,x+dx3,y+dy1)
deltax = (dx1+(2*dx2)+(2*dx3)+dx4)/6
deltay = (dy1+(2*dy2)+(2*dy3)+dy4)/6
xth = x+deltax
yth = y+deltay
x=xth
y=yth
t = t+h
end
function [dy] = myfunction(t,x,y)
dy=(50*sin(8*pi*t))-(50*x)-y;
end
Method used (I swapped v for y):

0 commentaires
Réponses (1)
Torsten
le 22 Avr 2022
Can you take it from here ?
%Solves y'' - (-exp(-B*t)-y+5*exp(-2*t)-2*exp(-(B+2)*t)+exp(-B*t)+t) = 0
% t in [0 1]
% y(0) = 1, y'(0) = -1
% B = 4
tstart = 0.0;
tend = 1.0;
h = (tend - tstart)/20;
T = (tstart:h:tend).';
Y0 = [1 -1];
B = 4;
f = @(t,y) [y(2) -exp(-B*t)-y(1)+5*exp(-2*t)-2*exp(-(B+2)*t)+exp(-B*t)+t];
Y = runge_kutta_RK4(f,T,Y0);
plot(T,Y)
function Y = runge_kutta_RK4(f,T,Y0)
N = numel(T);
n = numel(Y0);
Y = zeros(N,n);
Y(1,:) = Y0;
for i = 2:N
t = T(i-1);
y = Y(i-1,:);
h = T(i) - T(i-1);
k0 = f(t,y);
k1 = f(t+0.5*h,y+k0*0.5*h);
k2 = f(t+0.5*h,y+k1*0.5*h);
k3 = f(t+h,y+k2*h);
Y(i,:) = y + h/6*(k0+2*k1+2*k2+k3);
end
end
2 commentaires
Torsten
le 22 Avr 2022
Modifié(e) : Torsten
le 22 Avr 2022
For your function,
f = @(t,y) [y(2) F0/m*sin(omega*t)-c/m*y(2)-k/m*y(1)]
where
y(1) = y, y(2) = y'.
So you shouldn't work with x and y, but with a vector y=(y(1),y(2)) to make everything easier.
Of course, omega, F0, m and k have to be given values before.
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!