Find intersections of curves

3 vues (au cours des 30 derniers jours)
SAM
SAM le 24 Avr 2022
Modifié(e) : Torsten le 24 Avr 2022
hello, I have the following two formulas and I want to know How can I find the intersection point of the two curves and how to mark it on the graph?
syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(2*bL);
f22=sin(2*(ab)*bL);
fplot(bL,f12,'-or');
hold on
fplot(bL,f22,'-ob');
thank you

Réponse acceptée

Matt J
Matt J le 24 Avr 2022
Modifié(e) : Matt J le 24 Avr 2022
syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(bL);
f22=sin(2*(ab)*bL);
bLmax=fzero(matlabFunction(f12-f22) ,2 );
rts=[-bLmax,0,+bLmax];
fnum=matlabFunction(f12);
fplot(bL,f12,'-r');
hold on
fplot(bL,f22,'-b');
plot(rts,fnum(rts),'ok','MarkerFaceColor','k')
hold off
xlim([-3,3])
ylim([-0.001,0.001])

Plus de réponses (2)

Torsten
Torsten le 24 Avr 2022
bL = 0 is the intersection point.
hold on
plot(0,0,'.')
  2 commentaires
SAM
SAM le 24 Avr 2022
I want a value other than 0
Torsten
Torsten le 24 Avr 2022
Modifié(e) : Torsten le 24 Avr 2022
a = 8.0901e-5;
fun1 = @(a,x) a*sinh(x);
fun2 = @(a,x) sin(2*a*x);
f=@(a,x)fun1(a,x)-fun2(a,x)
x1 = fzero(@(x)f(a,x),[2,2.5])
x2 = fzero(@(x)f(a,x),[-3,-2])
x=-2.5:0.01:2.5;
plot(x,fun1(a,x))
hold on
plot(x,fun2(a,x))
hold on
plot(x1,fun1(a,x1),'.')
hold on
plot(x2,fun1(a,x2),'.')
hold on
plot(0,0,'.')

Connectez-vous pour commenter.


Sam Chak
Sam Chak le 24 Avr 2022
Modifié(e) : Sam Chak le 24 Avr 2022
Try performing analysis on the problem first, before quickly attempting to solve it. The hyperbolic sine is unbounded. Do you think there are intersections other than the trivial solution at bL = 0? Seems there are another two at .

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by