2nd order diff equation for ode23/45?
17 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
byverone
le 4 Mai 2022
Modifié(e) : Davide Masiello
le 4 Mai 2022
I have spent hours trying to figure out why I'm not getting the correct answer.

%xy''-y'-8*x^3*y^3=0
%y''= y'/x + 8y^3x^2
% y'= a(1)
% y=a(2)
%y''(x) = a(1)/x + 8*(a(2)^3)*(a(1)^2)
y2p = @(x,a) [a(2); a(1)/x + 8*(a(2)^3)*(a(1)^2)];
tspan = [1 4];
y0 = [0.5 -0.5]
[y,yPrime]=ode23(y2p,tspan,y0)
%plot(y,yPrime)
[y2,y2Prime]=ode45(y2p,tspan,y0)
%plot(y2,y2Prime)
%exact solution
1/(1+1^2) %.5 at x=1
1/(1+4^2) %.0588 at x=4
0 commentaires
Réponse acceptée
Davide Masiello
le 4 Mai 2022
Modifié(e) : Davide Masiello
le 4 Mai 2022
The way you coded the ODE system is incorrect. See below
clear,clc
% Numerical solution
tspan = [1 4];
y0 = [0.5 -0.5];
[x23,y23] = ode23(@odefun,tspan,y0);
[x45,y45] = ode45(@odefun,tspan,y0);
% Exact solution
x = linspace(1,4,100);
y = 1./(1+x.^2);
% Plot
plot(x,y,'k',x23,y23(:,1),'b',x45,y45(:,1),'r')
legend('exact','ode23','ode45')
% Function
function dydx = odefun(x,y)
dydx(1,1) = y(2);
dydx(2,1) = y(2)/x+8*y(1)^3*x^2;
end
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
