Not able to find fzero
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Dhawal Beohar
le 25 Mai 2022
Commenté : Dhawal Beohar
le 7 Août 2022
--> difference.m
function y = difference(u,d1,n,a,m,T,PsByN_0,UmaxN_0)
d1=20;
n=10^-11.4;
m=2.7;
a=0.5;
T=1;
PsByN_0dB=5;
PsByN_0=10.^(PsByN_0dB/10);
UmaxdB = 5;
UmaxN_0=10.^(UmaxdB/10);
fun1 = (-1./u)*log(((d1^m)./(a*n*PsByN_0*T*u+d1^m)*a)./(1-a));
fun2 = (1./u)*log(((-exp(u*UmaxN_0)*(exp(-PsByN_0*u)))./(u*UmaxN_0+PsByN_0*u))*(PsByN_0*u)-(PsByN_0*u*(exp(-PsByN_0*u)))*(expint(u*UmaxN_0+PsByN_0*u))+(exp(-PsByN_0*u))+((PsByN_0*u)*(exp(-PsByN_0*u)))*(expint(PsByN_0*u))+(exp(u*UmaxN_0))./((UmaxN_0/PsByN_0)+1));
y = (fun1 - fun2);
g0=fzero(@(u) difference(u,d1,n,a,m,T,PsByN_0,UmaxN_0), 10);
end
0 commentaires
Réponse acceptée
Torsten
le 25 Mai 2022
d1=20;
n=10^-11.4;
m=2.7;
a=0.5;
T=1;
PsByN_0dB=5;
PsByN_0=10.^(PsByN_0dB/10);
UmaxdB = 5;
UmaxN_0=10.^(UmaxdB/10);
fun1 = @(u) (-1./u)*log(((d1^m)./(a*n*PsByN_0*T*u+d1^m)*a)./(1-a));
fun2 = @(u) (1./u)*log(((-exp(u*UmaxN_0)*(exp(-PsByN_0*u)))./(u*UmaxN_0+PsByN_0*u))*(PsByN_0*u)-(PsByN_0*u*(exp(-PsByN_0*u)))*(expint(u*UmaxN_0+PsByN_0*u))+(exp(-PsByN_0*u))+((PsByN_0*u)*(exp(-PsByN_0*u)))*(expint(PsByN_0*u))+(exp(u*UmaxN_0))./((UmaxN_0/PsByN_0)+1));
fun =@(u) (fun1(u) - fun2(u));
g0=fzero(fun, 10);
21 commentaires
Torsten
le 6 Août 2022
I suggest you try an interval around the zero you found, e.g.
u = fzero(fun,[0.01,0.02])
U = linspace(0.01,0.02,20);
fU = fun(U);
plot(U,fU)
Plus de réponses (1)
Sam Chak
le 25 Mai 2022
Guess the problem that you want to solve is a complex-valued function.
function y = difference(u)
% parameters
d1 = 20;
n = 10^-11.4;
m = 2.7;
a = 0.5;
T = 1;
PsByN_0dB = 5;
PsByN_0 = 10.^(PsByN_0dB/10);
UmaxdB = 5;
UmaxN_0 = 10.^(UmaxdB/10);
% functions
fun1 = (-1./u)*log(((d1^m)./(a*n*PsByN_0*T*u + d1^m)*a)./(1 - a));
fun2 = (1./u)*log(((- exp(u*UmaxN_0)*(exp(-PsByN_0*u)))./(u*UmaxN_0 + PsByN_0*u))*(PsByN_0*u) - (PsByN_0*u*(exp(-PsByN_0*u)))*(expint(u*UmaxN_0 + PsByN_0*u)) + (exp(-PsByN_0*u)) + ((PsByN_0*u)*(exp(-PsByN_0*u)))*(expint(PsByN_0*u)) + (exp(u*UmaxN_0))./((UmaxN_0/PsByN_0) + 1));
y = (fun1 - fun2);
end
Let's try with fzero first.
[u, fval, exitflag, output] = fzero(@(u) difference(u), 10)
The exitflag = -4 indicates that complex function value was encountered while searching for an interval containing a sign change.
Next, fsolve is used.
[u, fval, exitflag, output] = fsolve(@(u) difference(u), 10)
The exitflag = -2 means that the Equation is not solved. The exit message shows that fsolve stopped because the problem appears regular as measured by the gradient, but the vector of function values is not near zero as measured by the default value of the function tolerance.
5 commentaires
Torsten
le 25 Mai 2022
Yes, as said, I plotted the difference and there is no point where the difference is 0.
Voir également
Catégories
En savoir plus sur Get Started with Optimization Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

