Solve a system of 4 non linear equations with symbolic expressions
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello,
Could you tell me please the way to solve this system of equations using Matlab ?
Thanks for your help,
h = ((zeta*(1-u))/(gamma*(1+eta-n*eta)-1))^(1/(alpha*theta))*((theta*(1-alpha)*(1-tau_l)*A)/(1-theta))^(1/alpha)*u^(-1);
c = (((1-beta)*n*eta*gamma)*(b+1-delta+alpha*A*(h*u)^(1-alpha)*(1-tau_k)))/(beta*(1-delta+alpha*A*(h*u)^(1-alpha)*(1-tau_k))-1+n+n*eta);
b = (A*(h*u)^(1-alpha)*(d-tau_l*(1-alpha)-alpha*tau_k)*(1-delta+alpha*A*(h*u)^(1-alpha)*(1-tau_k)))/((1+n)*gamma-1+delta-alpha*A*(h*u)^(1-alpha)*(1-tau_k));
gamma = (A*(h*u)^(1-alpha)*(1-d-((theta*(1-alpha)*(1-u)*(1-tau_l))/((1-theta)*u)))-c+1-delta)/(1+n);
9 commentaires
Walter Roberson
le 27 Mai 2022
At the moment I cannot think of any way that Simulink would be useful for this purpose.
I have no information about the quality of Octave implementation of relevant routines.
Réponses (1)
Sam Chak
le 27 Mai 2022
Modifié(e) : Sam Chak
le 27 Mai 2022
You can follow the examples in
to create a function m-file and write the equations in the form
.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1012750/image.png)
function F = root2d(x)
F(1) = exp(-exp(-(x(1) + x(2)))) - x(2)*(1 + x(1)^2);
F(2) = x(1)*cos(x(2)) + x(2)*sin(x(1)) - 0.5;
end
Then, in the command window, type:
fun = @root2d;
x0 = [0, 0]; % guess initial point of the solution [0, 0].
x = fsolve(fun, x0)
x =
0.3532 0.6061
If you prefer solving the problem symbolically, you can use the solve function and refer to this link:
0 commentaires
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!