Help plotting a circular orbit

26 vues (au cours des 30 derniers jours)
Adam Lacey
Adam Lacey le 4 Juin 2022
Modifié(e) : Adam Lacey le 6 Juin 2022
Hi so basically i would like to be able to produce a circular graph of sattelite position around earth. The code attached below starts with acceleration and use Eulers method to integrate once for velocity and again for displacement. The code works and produces results i am just unsure how to convert the outputs into a circular graph that updates displacement around earth as a result of the calculated velocity.
Code:
clear all
clc
G = 6.6743*10^-11; %Gravitational Constant, Units: m^3 kg^-1 s^-2
Mc = 5.972*10^24; %Mass of central body (earth), Units: kg
rE = 6371; %Radius of earth, Units: Km
height = 4000 %Altitude of sattelites orbit, Units: km
r = height + rE; %Radius of circular orbits, Units: km
mu = 3.986004418*10^5; %Earths Gravitational parameter, Units: km^3s^-2
x_initial = 0;
v_initial = 12000; %km/h
dt = 0.1;
t_vector = 0:dt:100000;
x(1) = x_initial;
v(1) = v_initial;
%%Math working out
%Fx = -G*x*(Mc/r^3);
%a = Fx/Mc
%a = (-G*x)/r^3
%a = -5.9833e-23*x m/s^2
%v(t) = 12000 + a*t
%y(t) = r + 12000t + 0.5a*t^2
x_initial = 0;
v_initial = 12000;
x(1)=x_initial;
v(1)=v_initial;
for i=1:length(t_vector)-1
a = -G/r^3;
v(i+1) = v(i) + a*dt;
xslope = v(i);
x(i+1) = x(i)+xslope*dt;
end
figure(1)
plot(t_vector,x)
figure(2)
plot(t_vector,v)
  1 commentaire
Walter Roberson
Walter Roberson le 4 Juin 2022
You need to track x and y separately.

Connectez-vous pour commenter.

Réponse acceptée

Lateef Adewale Kareem
Lateef Adewale Kareem le 4 Juin 2022
G = 6.6743*10^-11; %Gravitational Constant, Units: m^3 kg^-1 s^-2
Mc = 5.972*10^24; %Mass of central body (earth), Units: kg
rE = 6371; %Radius of earth, Units: Km
height = 4000; %Altitude of sattelites orbit, Units: km
r = height + rE; %Radius of circular orbits, Units: km
x_initial = 0;
y_initial = r*1e3;
dt = 1;
T = sqrt(4*pi^2*(r*1e3)^3/(G*Mc)); % period in sec
t_vector = 0:dt:T;
dsdt = @(s)[s(3), s(4), -G*Mc*s(1)/norm(s([1,2]))^3, -G*Mc*s(2)/norm(s([1,2]))^3]; %satelite orbitaal dynamics
x = x_initial; y = y_initial; v = sqrt(G*Mc/(r*1e3));
xv = v*y_initial/(r*1e3); yv = -v*x_initial/(r*1e3); % initial velocities
state = [x_initial, y_initial, xv, yv];
for i=2:length(t_vector)
state = state + rk4(dsdt, state, dt);
x = [x, state(1)];
y = [y, state(2)];
xv = [xv, state(3)];
yv = [yv, state(4)];
end
figure
subplot(2,2,1)
plot(t_vector,x)
title('x position of satellite')
subplot(2,2,2)
plot(t_vector,y)
title('y position of satellite')
subplot(2,2,3)
plot(t_vector,xv)
title('x velocity of satellite')
subplot(2,2,4)
plot(t_vector,yv)
title('y velocity of satellite')
figure
plot(x, y)
title('orbit of satellite')
function dy = rk4(dydt, y, dt) %runge kutta integrator
k1 = dydt(y); k2 = dydt(y + dt*k1/2);
k3 = dydt(y + dt*k2/2); k4 = dydt(y + dt*k3);
dy = dt*(k1+2*k2+2*k3+k4)/6;
end
  1 commentaire
Adam Lacey
Adam Lacey le 4 Juin 2022
This is amazing thank you so much

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Reference Applications dans Help Center et File Exchange

Produits


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by