How to plot such a complete figure by matlab. The hemisphere is $x^2+y62+z^2=4$ and the cylinder is $x^2+y^2=1$ with bases $z=0$ and $z=\sqrt{3}$
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
How to plot such a complete figure by matlab. The hemisphere is $x^2+y62+z^2=4$ and the cylinder is $x^2+y^2=1$ with bases $z=0$ and $z=\sqrt{3}$
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1022405/image.jpeg)
The code of hemisphere
R = 2;
[X,Y] = meshgrid(-2:.1:2);
Z = sqrt(R.^2 - X.^2 - Y.^2);
Z(imag(Z) ~= 0) = 0;
mesh(X,Y,Z);
2 commentaires
Réponse acceptée
KSSV
le 7 Juin 2022
I would go by parametric equations.
%% Sphere
R = 2 ;
th = linspace(0,2*pi) ;
phi = linspace(0,pi/2) ;
[T,P] = meshgrid(th,phi) ;
X1 = R*cos(T).*sin(P) ;
Y1 = R*sin(T).*sin(P) ;
Z1 = R*cos(P) ;
%% Cyclinder
R = 1 ;
H = sqrt(3) ;
th = linspace(0,2*pi);
h = linspace(0,H) ;
[T,H] = meshgrid(th,h) ;
X2 = R*cos(T);
Y2 = R*sin(T) ;
Z2 = H ;
mesh(X1,Y1,Z1,'FaceAlpha',0.5)
hold on
mesh(X2,Y2,Z2)
axis equal
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Surface and Mesh Plots dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!