Unable to perform assignment because the left and right sides have a different number of elements.

1 vue (au cours des 30 derniers jours)
Unable to perform assignment because the left and right sides have a different number of elements.
(line 93)
t_ar(step_counter)=t; % Add the current time to the time logclearvars
Does anyone know why I'm getting this error?
% Setup
t_max= 1200; % in s
k=0.01; % in s^-1
g_nr=2; % in molecules/s
t_nr=0; % in s
x_nr=5; % in molecules
step_counter=1;
% Perturbations
perturbation_magnitude=150; % in molecules
perturbation_time_400=400;% in s
perturbation_time_800=800;% in s
is_perturbation_400=0;
is_perturbation_800=0;
% Simulation of the non-regulated construct
t=0;
prod_rate=g_nr;
while t<t_max
deg_rate=k*x_nr(step_counter);
wait_time=-log(rand)/((prod_rate)+(deg_rate));
prob_prod=(prod_rate)/((prod_rate)+(deg_rate)); % Propensity of production
t=t+wait_time; % Update current time
step_counter=step_counter+1; % Update the number of steps (reactions) associated with the experiment.
t_nr(step_counter)=t; % Add the current time to the time log
if rand < prob_prod % Defines whether production takes place based on Monte Carlo method.
x_nr(step_counter)=x_nr(step_counter-1)+1; % Implements production
else
x_nr(step_counter)=x_nr(step_counter-1)-1; % Implements degradation
end
if t>perturbation_time_400 && is_perturbation_400==0
x_nr(step_counter)=x_nr(step_counter)+perturbation_magnitude;
is_perturbation_400=1;
end
if t > perturbation_time_800 && is_perturbation_800==0
x_nr(step_counter)=x_nr(step_counter)-perturbation_magnitude;
is_perturbation_800=1;
end
if t>t_max
t_nr(end)=[];
x_nr(end)=[];
end
end
close all
figure,
plot(t_nr,x_nr,'r','LineWidth',2)
hold on
% plot(x_nr,'b','LineWidth',2)
% legend('t_nr','x_nr')
% autoregulated construct
t_max= 1200; % in s
k=0.01; % in s^-1
step_counter=1;
t=0;
g_nr=2;
x_nr=5;
g_ar=4;
n_hill=8;
x_ar=5;
t_ar=0;
theta=(g_nr)/k;
% Perturbations
perturbation_magnitude=150; % in molecules
perturbation_time_400=400;% in s
perturbation_time_800=800;% in s
is_perturbation_400=0;
is_perturbation_800=0;
while t<t_max
prod_ratea=g_ar*((theta.^n_hill)./((theta.^n_hill)+(x_ar.^n_hill)));
deg_rate=k*x_ar(step_counter);
wait_time=-log(rand)./((prod_ratea)+(deg_rate));
prob_prod=prod_ratea/((prod_ratea)+(deg_rate)); % Propensity of production
t=t+wait_time; % Update current time
step_counter=step_counter+1; % Update the number of steps (reactions) associated with the experiment.
t_ar(step_counter)=t; % Add the current time to the time log
if rand < prob_prod % Defines whether production takes place based on Monte Carlo method.
x_ar(step_counter)=x_ar(step_counter-1)+1; % Implements production
else
x_ar(step_counter)=x_ar(step_counter-1)-1; % Implements degradation
end
if t>perturbation_time_400 && is_perturbation_400==0
x_ar(step_counter)=x_ar(step_counter)+perturbation_magnitude;
is_perturbation_400=1;
end
if t > perturbation_time_800 && is_perturbation_800==0
x_ar(step_counter)=x_ar(step_counter)-perturbation_magnitude;
is_perturbation_800=1;
end
if t>t_max
t_ar(end)=[];
x_ar(end)=[];
end
end
plot(t_ar,x_ar,'b','LineWidth',2)
% hold on
% plot(x_ar,'b','LineWidth',2)
legend('x_nr','x_ar')

Réponses (1)

Image Analyst
Image Analyst le 7 Juin 2022
Modifié(e) : Image Analyst le 7 Juin 2022
t is not a scalar then. Just put a breakpoint there and see what the size of t is.
t is
t =
0.326275650711335 0.326275650711493
which can't fit into a single array element.
  3 commentaires
Kevin Holly
Kevin Holly le 7 Juin 2022
t is 2x1 and not 1x1
I changed the code below to fix the error, however the solution may be wrong. You will need to check to see if the correct algorithm was performed.
% Setup
t_max= 1200; % in s
k=0.01; % in s^-1
g_nr=2; % in molecules/s
t_nr=0; % in s
x_nr=5; % in molecules
step_counter=1;
% Perturbations
perturbation_magnitude=150; % in molecules
perturbation_time_400=400;% in s
perturbation_time_800=800;% in s
is_perturbation_400=0;
is_perturbation_800=0;
% Simulation of the non-regulated construct
t=0;
prod_rate=g_nr;
while t<t_max
deg_rate=k*x_nr(step_counter);
wait_time=-log(rand)/((prod_rate)+(deg_rate));
prob_prod=(prod_rate)/((prod_rate)+(deg_rate)); % Propensity of production
t=t+wait_time; % Update current time
step_counter=step_counter+1; % Update the number of steps (reactions) associated with the experiment.
t_nr(step_counter)=t; % Add the current time to the time log
if rand < prob_prod % Defines whether production takes place based on Monte Carlo method.
x_nr(step_counter)=x_nr(step_counter-1)+1; % Implements production
else
x_nr(step_counter)=x_nr(step_counter-1)-1; % Implements degradation
end
if t>perturbation_time_400 && is_perturbation_400==0
x_nr(step_counter)=x_nr(step_counter)+perturbation_magnitude;
is_perturbation_400=1;
end
if t > perturbation_time_800 && is_perturbation_800==0
x_nr(step_counter)=x_nr(step_counter)-perturbation_magnitude;
is_perturbation_800=1;
end
if t>t_max
t_nr(end)=[];
x_nr(end)=[];
end
end
close all
figure,
plot(t_nr,x_nr,'r','LineWidth',2)
hold on
% plot(x_nr,'b','LineWidth',2)
% legend('t_nr','x_nr')
% autoregulated construct
t_max= 1200; % in s
k=0.01; % in s^-1
step_counter=1;
t=0;
g_nr=2;
x_nr=5;
g_ar=4;
n_hill=8;
x_ar=5;
t_ar=[];
theta=(g_nr)/k;
% Perturbations
perturbation_magnitude=150; % in molecules
perturbation_time_400=400;% in s
perturbation_time_800=800;% in s
is_perturbation_400=0;
is_perturbation_800=0;
while t<t_max
prod_ratea=g_ar*((theta.^n_hill)./((theta.^n_hill)+(x_ar.^n_hill)));
deg_rate=k*x_ar(step_counter);
wait_time=-log(rand(1))./((prod_ratea)+(deg_rate));
prob_prod=prod_ratea/((prod_ratea)+(deg_rate)); % Propensity of production
t=t+wait_time(1); % Update current time
step_counter=step_counter+1; % Update the number of steps (reactions) associated with the experiment.
t_ar(step_counter)=t; % Add the current time to the time log
if rand < prob_prod % Defines whether production takes place based on Monte Carlo method.
x_ar(step_counter)=x_ar(step_counter-1)+1; % Implements production
else
x_ar(step_counter)=x_ar(step_counter-1)-1; % Implements degradation
end
if t>perturbation_time_400 && is_perturbation_400==0
x_ar(step_counter)=x_ar(step_counter)+perturbation_magnitude;
is_perturbation_400=1;
end
if t > perturbation_time_800 && is_perturbation_800==0
x_ar(step_counter)=x_ar(step_counter)-perturbation_magnitude;
is_perturbation_800=1;
end
if t>t_max
t_ar(end)=[];
x_ar(end)=[];
end
end
plot(t_ar,x_ar,'b','LineWidth',2)
% hold on
% plot(x_ar,'b','LineWidth',2)
legend('x_nr','x_ar')

Connectez-vous pour commenter.

Catégories

En savoir plus sur Scripts dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by