how to find lyapunov exponent of a 3d discrete system in matlab?

2 vues (au cours des 30 derniers jours)
ik kumar
ik kumar le 9 Juin 2022
Réponse apportée : Divyam le 13 Juin 2025
for example like predator-prey model

Réponses (1)

Divyam
Divyam le 13 Juin 2025
To compute the Lyapunov exponents of a 3D discrete dynamical system you would need to follow a numerical procedure on an evolving Jacobian matrix along a trajectory while performing QR decomposition at each step.
The following code illustrates the approach mentioned above:
function lyap3d
% Parameters (example values)
r = 1.1; a = 0.1; b = 0.2;
N = 10000; % iterations
dt = 1; % discrete system
% Initial condition
x = [0.5; 0.4; 0.3];
% Initialize orthonormal vectors
Q = eye(3);
le = zeros(1, 3); % To store Lyapunov exponents
for i = 1:N
% Evolve system
x = f(x, r, a, b);
% Compute Jacobian at current x
J = jacobian_f(x, r, a, b);
% Tangent map
Z = J * Q;
% QR decomposition
[Q, R] = qr(Z);
% Accumulate log of absolute values of diagonal
le = le + log(abs(diag(R)))';
end
% Average to get the Lyapunov exponents
le = le / (N * dt);
fprintf('Lyapunov Exponents:\n %f\n %f\n %f\n', le);
end
function xn = f(x, r, a, b)
% Example map function
xn = [
x(1)*(1 + r - a*x(2));
x(2)*(1 - b + a*x(1) - 0.1*x(3));
x(3)*(1 - 0.05*x(1) + 0.02*x(2));
];
end
function J = jacobian_f(x, r, a, b)
% Jacobian matrix of the map f
J = zeros(3);
J(1,1) = 1 + r - a*x(2);
J(1,2) = -a*x(1);
J(1,3) = 0;
J(2,1) = a*x(2);
J(2,2) = 1 - b + a*x(1) - 0.1*x(3);
J(2,3) = -0.1*x(2);
J(3,1) = -0.05*x(3);
J(3,2) = 0.02*x(3);
J(3,3) = 1 - 0.05*x(1) + 0.02*x(2);
end
Note: You can define the map function (f(x)) and the Jacobian matrix of partial derivatives (J(x)) as per your requirements.

Catégories

En savoir plus sur Matrix Computations dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by