How to Handle Estimating Parameters With MLE and Fmincon Errors
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi, I am trying to estimate the parameters of a distribution using mle and this is my log likelihood function

written in code as so filename (bgg.m)
function LL = bgg(p,x)
sum1 = 0;
sum2 = 0;
sum3 = 0;
sum4 = 0;
n = length(x);
for i = 1:n
a = exp(p(3) * x(i));
z = exp(-(p(2)/p(3)) * (a-1));
sum1 = sum1 + x(i);
sum2 = sum2 + a;
sum3 = sum3 + log(1 - z);
sum4 = sum4 + log(1 - (1-z)^p(1));
end
LL = n * log(p(1)) + n * log(p(2)) + n * p(2) / p(3) - n * log(beta(p(4),p(5)))...
+ p(3) * sum1 - p(2) / p(3) * sum2 + (p(1) * p(4) - 1) * sum3 + (p(5)-1) * sum4;
LL = double(-LL);
end
and I am trying to minimize the negative loglikelihood using fmincon as follows filename (calculate.m)
p = [];
x = [0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18, 18, 18, 18,...
21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 67, 67, 67, 67, ...
72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86];
lb = [2 0.003 0.05 0.1 0.008];
ub = [3 0.005 0.075 0.15 0.012];
p0 = lb + (ub-lb).*rand(1,length(lb));
i = 1;
options = optimoptions('fmincon','Algorithm',...
'interior-point','Display','iter','MaxFunEvals',1e+5,'MaxIter',500);
Ain = []; bin = []; Aeq = []; beq = [];
p = fmincon(@(p)bgg(p,x), p0,Ain,bin,Aeq,beq,lb,ub,@(p) confun(p), options);
y = bgg(p,x);
function[c,ceq]=confun(p)
c = [];
cin = [];
end
I have gotten multiple errors such as the most recent one is

Any suggestions for the problem I have or alternatives to using the code above? Thank you.
0 commentaires
Réponses (1)
Matt J
le 9 Juin 2022
Modifié(e) : Matt J
le 9 Juin 2022
The error is thrown because your confun tries to return a variable called ceq which you never create. You do create a variable called cin which is never used.
It is moot, however. Since you have no actual nonlinear constraints, there is no need to define a confun() at all:
p = fmincon(@(p)bgg(p,x), p0,Ain,bin,Aeq,beq,lb,ub, [] , options);
2 commentaires
Matt J
le 10 Juin 2022
Are there closed form formulas for the mean and variance of the distribution? Maybe you could use them to minimize a simplified approximation to the LL.
Voir également
Catégories
En savoir plus sur Linear and Nonlinear Regression dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!