Minimize problem using PSO
16 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I want to find a minimum value of y(and the corresponding value of L and x), for various values of L and x. How to do this using Particle Swarm Optimization ?
The equation is:
Y= (20+500*L)/x^(1.2+(3*L))
0 commentaires
Réponse acceptée
Sam Chak
le 15 Juin 2022
Modifié(e) : Sam Chak
le 17 Juin 2022
Hi @Reji G
It seems that the function does not have any global minima.
[X, L] = meshgrid(1:3/40:4, 0.1:0.3/40:0.4);
Y = (20 + 500*L)./X.^(1.2 + 3*L);
surf(X, L, Y)
xlabel('x'); ylabel('L'); zlabel('y');
view(45, 30)
% Using PSO to minimize the function with the specified bound constraints
f = @(x) (20 + 500*x(2))./x(1).^(1.2 + 3*x(2));
nvars = 2;
lb = [1 0.1]; % lower bounds
ub = [4 0.4]; % upper bounds
[x, fval] = particleswarm(f, nvars, lb, ub)
4 commentaires
Sam Chak
le 17 Juin 2022
Hi Reji,
1. The final objective function value of swarm particles is displayed as fval which indicates the function value at best solution found so far.
2. This is how to perform the maximization:
% Using PSO to maximize the function with the specified bound constraints
f = @(x) (20 + 500*x(2))./x(1).^(1.2 + 3*x(2));
fmax = @(x) -f(x);
nvars = 2;
lb = [1 0.1]; % lower bounds
ub = [4 0.4]; % upper bounds
[x, fval] = particleswarm(fmax, nvars, lb, ub)
fmaxValue = -fval % can verify the result with the graphical representation
3. Although the algorithm performs the search within the bound constraints, it does NOT search the entire space as in to (as in your scenario). It is possible list/store the position and the objective function value of each swarm particle in each iteration through calling the OutputFcn, something like this:
options = optimoptions(@particleswarm, 'OutputFcn', @pswoutfun)
[x, fval] = particleswarm(fmax, nvars, lb, ub, options)
where you have write the code for the pswoutfun.m file. But it can be a little tedious to write the code here. You can find some templates in
edit pswplotbestf
edit psoutputfile
For more info, please check:
If you find this tutorial on using particleswarm() is helpful, consider accepting ✔ and voting 👍 the Answer. Thanks, @Reji G!
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Particle Swarm dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!