Solve analytically an system of coupled diffrential équation with Matlab
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Thomas TJOCK-MBAGA
le 16 Juin 2022
Modifié(e) : Torsten
le 16 Juin 2022
I would like to solve analytically the following system of coupled 5 ODES in order one. A(dT/dt)+ B*T = G.I tried to solve it it Maple but an memory error accurs After 30 mins. I dont know how i can solve the system informatique MATLAB in order to obtain analytical expression
.
5 commentaires
Torsten
le 16 Juin 2022
Modifié(e) : Torsten
le 16 Juin 2022
As I already told you: It is impossible to get analytical expressions because the solution of your ODE system involves solving a polynomial equation of degree 5 which does not have an analytical solution (at least in your case).
But what is the problem ? You can replace the original analytical expressions by a function call and calculate the required results numerically in this function.
Réponse acceptée
Sam Chak
le 16 Juin 2022
@Thomas TJOCK-MBAGA, not sure why you want to look for the analytical solution, especially with the given initial condition. Since it is a linear system, you can try using dsolve() to see if it is possible to obtain something like this:
syms v(t) w(t) x(t) y(t) z(t)
eqn1 = diff(v,t) == 0*v + 1*w + 0*x + 0*y + 0*z;
eqn2 = diff(w,t) == 0*v + 0*w + 1*x + 0*y + 0*z;
eqn3 = diff(x,t) == 0*v + 0*w + 0*x + 1*y + 0*z;
eqn4 = diff(y,t) == 0*v + 0*w + 0*x + 0*y + 1*z;
eqn5 = diff(z,t) == -1*v - 5*w - 10*x - 10*y - 5*z + 3*exp(-2*t);
eqns = [eqn1, eqn2, eqn3, eqn4, eqn5];
cond = [v(0)==1, w(0)==0, x(0)==0, y(0)==0, z(0)==0];
Sol = dsolve(eqns, cond)
Sol.v
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!