The end operator must be used within an array index expression.

4 vues (au cours des 30 derniers jours)
Haya Ali
Haya Ali le 17 Juin 2022
Can anybody please help me to plot minf which is defined at the end. Below is my code
clear all; close all; clc;
Vrest = 0; % mV− change this to −65 ifdesired
dt = 0.01; % ms
totalTime = 200; % ms
C = 20; % uF/cm^2
V_Ca = 120; %mV %Reversal potential for Ca2+ current
V_K = -84; %mV %Reversal potential for K+ current
V_Leak = -60; %mV %Reversal potential for leak current
g_Ca = 4.4; % mS/cm^2 % Maximal conductance associated with Ca2+ current
g_K = 8; % mS/cm^2 % Maximal conductance associated with K+ current
g_Leak = 2; % mS/cm^2 % Conductance associated with leak current
% Vector oftimesteps
t = [0:dt:totalTime];
% samples = length(t);
V = zeros(size(t));
% Current input −− change this to see how different inputs affect the neuron
I_current = ones(1,length(t))*0.0;
I_current(10/dt:end) = 60; % Input of 0 microA/cm2 beginning at 50 ms and steady until end of time period.
% initializing values
V(1) = Vrest; % membrane potential is starting at its resting state
% separate functions to get the alpha and beta values
[alphaW, betaW] = w_equations(V(1));
% initializing gating variables to the asymptotic values when membrane potential
% is set to the membrane resting value based on equation 13
w(1) = (alphaW / (alphaW + betaW));
% repeat for time determined in totalTime , by each dt
for i = 1:length(t)
% calculate new alpha and beta based on last known membrane potenatial
[alphaW, betaW] = w_equations(V(i));
% conductance variables − computed separately to show how this
% changes with membrane potential in one ofthe graphs
conductance_Ca(i) = g_Ca*(m_inf(i));
conductance_K(i)=g_K*(w(i));
% retrieving ionic currents
I_Ca(i) = conductance_Ca(i)*(V(i)-V_Ca);
I_K(i) = conductance_K(i)*(V(i)-V_K);
I_Leak(i) = g_Leak*(V(i)-V_Leak);
% Calculating the input
Input = I_current(i) - (I_Ca(i) + I_K(i) + I_Leak(i));
% Calculating the new membrane potential
V(i+1) = V(i) + Input* dt*(1/C);
% getting new values for the gating variables
w(i+1) = w(i) + (alphaW *(1-w(i)) - betaW * w(i))*dt;
end
figure('Name', 'Gating Parameters')
plot(t(45/dt:end),minf(45/dt:end-1), 'r',t(45/dt:end), w(45/dt:end-1), 'g', 'LineWidth', 2)
legend('minf', 'w')
xlabel('Time (ms)')
ylabel('')
title('Gating Parameters')
figure('Name', 'Membrane Potential vs input')
subplot(2,1,1)
plot(t(10/dt:end),V(10/dt:end-1), 'LineWidth', 2)
xlabel('Time (ms)')
ylabel('Voltage (mV)')
title('Action Potential')
subplot(2,1,2)
plot(t(10/dt:end),I_current(10/dt:end), 'r', 'LineWidth', 2)
xlabel('Time (ms)')
ylabel('Voltage (mV)')
title('Input')
figure('Name', 'Conductance')
plot(t(10/dt:end),V(10/dt:end-1), 'r', t(10/dt:end), conductance_Ca(10/dt:end), 'b', t(10/dt:end), conductance_K(10/dt:end), 'g', 'LineWidth', 2)
legend('Action Potential', 'Ca+ Conductance', 'K+ Conductance')
xlabel('Time (ms)')
ylabel('Voltage (mV)')
title('Conduction of K+ and Ca+')
figure('Name', 'Currents')
plot(t(10/dt:end),I_Ca(10/dt:end), 'r',t(10/dt:end),I_K(10/dt:end), 'b', 'LineWidth', 2)
xlabel('Time (ms)')
ylabel('Current')
title('Currents')
% Special graph to show ionic current movement
Vrest = -12;
voltage = [-100:0.01:100];
for i = 1:length(voltage)
[alphaW, betaW] = w_equations(voltage(i));
tauw(i) = 1/(alphaW+betaW);
xw(i) = alphaW/(alphaW+betaW);
aW(i) = alphaW;
bW(i) = betaW;
end
figure('Name', 'Equilibrium Function');
plot(voltage, xw,'LineWidth', 2);
legend('w');
title('Equilibrium Function');
xlabel('mV')
ylabel('x(u)');
xlabel('Time (ms)')
%%%%%%%% functions section - always after main code %%%%%%%%%%%%%%%
%calculate alpha w and beta w
function [alpha_w, beta_w] = w_equations(V)
V_1 = -1.2; % mV
V_2 = 18; % mV
V_3 = 2; % mV
V_4 = 30; % mV
phi = 0.04; %1/ms %Rate scaling parameter
alpha_w = 1/2*phi* cosh((V-V_3)/(2*V_4))*(1 + tanh((V-V_3)/V_4));
beta_w = 1/2*phi* cosh((V-V_3)/(2*V_4))*(1 - tanh((V-V_3)/V_4));
end
%%%%%%%% functions section - always after main code %%%%%%%%%%%%%%%
function [minf] = m_inf(V)
V_1 = -1.2; % mV
V_2 = 18; % mV
V_3 = 2; % mV
V_4 = 30; % mV
minf = 1/2*(1 + tanh((V-V_1)/V_2));
end

Réponse acceptée

Geoff Hayes
Geoff Hayes le 17 Juin 2022
@Haya Ali - from this line
plot(t(45/dt:end),minf(45/dt:end-1), 'r',t(45/dt:end), w(45/dt:end-1), 'g', 'LineWidth', 2)
what is minf? I do not see that it is has been defined prior to this line of code. From context, the assumption is that it is an array...

Plus de réponses (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by