Solving misfit using both L1 and L2 norm
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi,
I have observed data and a vector "Pmodel ", which I am calculating following one equation. Now I need to have L1 norm and L2-norm solution of the difference between the observed and calculated parameter. Below, I followed the logic. Am I correct in this sense, kindly suggest.
----------------------------------------------
for i=1:length(s)
for j=1:length(h)
P_Model=C-(2.*v.*m_h(j))-(m_s(i).*log(v)); %Model
P_Obs=data(:,1);
Error(i,j)=sqrt(sum( sum( ((P_Model-P_Obs)).^2 ) )) %misfit calculation with L2 norm
Error(i,j)=sum(abs(P_Model-P_Obs)) %misfit calculation with L1 norm
end
end
------------------------------------------------------------------------------------------------------------------
Answer will be highly appreciated. Kindly suggest alternative if this is not correct apporach.
Thanking you in anticipation.
6 commentaires
Torsten
le 21 Juin 2022
Instead of searching for optimal s and h in a loop, use lsqcurvefit to fit your parameters (and minimize the error).
Réponses (0)
Voir également
Catégories
En savoir plus sur Surrogate Optimization dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
