How can I connect two 2D triangulated surfaces?

4 vues (au cours des 30 derniers jours)
Radu Andrei Matei
Radu Andrei Matei le 21 Juin 2022
Hi, I have the following surfaces created using the delaunayTriangulation function with the points in the attached .txt file (the yellow one has modified z coordinates):
How can I connect those two surfaces with a third triangulated one so that I get a volume similar to the one below (without center hole)?
The triangulation is very important, I dont want to just plot a surface between the points, I need a triangulated surface that connects the two. Thank you in advance guys :)
This is the code that generates the two surfaces:
nump = numel(app.pointsPinion(:,1));
C = [(1:(nump-1))' (2:nump)'; nump 1];
dt = delaunayTriangulation(app.pointsPinion(:,1),app.pointsPinion(:,2),C);
io = isInterior(dt); % Filter out the points outside the profile defined by the points
figure
h(1) = trisurf(dt.ConnectivityList(io,:),app.pointsPinion(:,1),app.pointsPinion(:,2),app.pointsPinion(:,3));
hold on
h(2) = trisurf(dt.ConnectivityList(io,:),app.pointsPinion(:,1),app.pointsPinion(:,2),app.pointsPinion(:,3)+app.optiTrans.b);
axis tight
pbaspect([1 1 1])

Réponse acceptée

Radu Andrei Matei
Radu Andrei Matei le 22 Juin 2022
Modifié(e) : Radu Andrei Matei le 22 Juin 2022
Hi, I've solved it. What I did is the following:
points 1, 2, 3 and 4 are points from the top surface and 5,6,7 and 8 are points from the bottom surface. I need two triangles to connect 4 points together, which means 2 rows in the connectivity matrix. I created the ConnectSurfaces function, which generates a connectivity matrix given a certain number of points, which will be the nº of rows in the vector with coordinates:
% Delaunay constraints for 2D top and bottom surfaces
nump = numel(app.pointsPinion(:,1));
C = [(1:(nump-1))' (2:nump)'; nump 1];
% Triangulation
dt = delaunayTriangulation(app.pointsPinion(:,1),app.pointsPinion(:,2),C);
% For filtering triangles outside profile defined by the original points
io = isInterior(dt);
figure
h(1) = trisurf(dt.ConnectivityList(io,:),app.pointsPinion(:,1),app.pointsPinion(:,2),app.pointsPinion(:,3),'FaceColor','r','EdgeColor','k');
hold on
h(2) = trisurf(dt.ConnectivityList(io,:),app.pointsPinion(:,1),app.pointsPinion(:,2),app.pointsPinion(:,3)+app.optiTrans.b,'FaceColor','r','EdgeColor','k');
n_points = size(app.pointsPinion,1);
ConMat = ConnectSurfaces(n_points);
trisurf(ConMat,[app.pointsPinion(:,1);app.pointsPinion(:,1)],[app.pointsPinion(:,2);app.pointsPinion(:,2)],[app.pointsPinion(:,3);app.pointsPinion(:,3)+app.optiTrans.b],'FaceColor','r','EdgeColor','k')
axis tight
pbaspect([1 1 1])
function ConnectivityMatrix = ConnectSurfaces(n_points)
for j = 1:1:n_points-1
k = 2*j;
ConnectivityMatrix(k-1,1) = j;
ConnectivityMatrix(k-1,2) = j+1;
ConnectivityMatrix(k-1,3) = j+n_points;
ConnectivityMatrix(k,1) = j+n_points;
ConnectivityMatrix(k,2) = j+n_points+1;
ConnectivityMatrix(k,3) = j+1;
end
% The following is for connecting the last pair of points with the first to get a closed donut-like surface
ConnectivityMatrix = [ConnectivityMatrix;[n_points 1 n_points*2];[n_points*2 n_points+1 1]];
end
The above solution yields the following result, which is what I was looking for:

Plus de réponses (0)

Catégories

En savoir plus sur Delaunay Triangulation dans Help Center et File Exchange

Produits


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by