How can I solve this second order equation?

1 vue (au cours des 30 derniers jours)
Shada ahmed
Shada ahmed le 28 Juin 2022
Modifié(e) : Sam Chak le 29 Juin 2022
if f=60 and k=0.105with plot the relationship between qf and fo?See the image
  1 commentaire
Shada ahmed
Shada ahmed le 28 Juin 2022
Fo^2_(2*f*k)/Qf*(pi-2*k*f)*fo-f^2=0

Connectez-vous pour commenter.

Réponses (2)

AMIT POTE
AMIT POTE le 29 Juin 2022
Hi Shada,
Seecond order differential equations can be solved using dsolve() or ode45() function. You can go through the following documentation for better understanding
  1 commentaire
Sam Chak
Sam Chak le 29 Juin 2022
Modifié(e) : Sam Chak le 29 Juin 2022
It is impossible to solve the given equation because it is not a differential equation to begin with
Fo^2_(2*f*k)/Qf*(pi-2*k*f)*fo-f^2=0
There are Fo, f, k, Qf, pi, and another fo, with Fo, Qf, and fo are unknowns.
Furthermore, the underscore symbol in Fo^2_ is not intelligible from the mathematical notation perspective.
Most likely @Shada ahmed refers the "second order" to the polynomial order in the equation.

Connectez-vous pour commenter.


Sam Chak
Sam Chak le 29 Juin 2022
This is not exactly the equation given, but it should give you the idea of ''visualizing' the relationship between Fo and Qf.
f = 60;
k = 0.105;
fimplicit(@(Fo, Qf) (Fo.^2) + (2*f*k)./Qf*(pi-2*k*f).*Fo - f^2, [-0.1 0.1 -4e-3 4e-3])
grid on
xlabel('Fo')
ylabel('Qf')

Catégories

En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange

Tags

Produits


Version

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by