Setting up a problem in linprog
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Deepa Maheshvare
le 7 Juil 2022
Commenté : Deepa Maheshvare
le 7 Juil 2022
This is a follow up to my previous question posted here
I want to define an absolute error loss function of the following form
% Loss Function (absolute error loss)
%% input curves
scale = 1.5;
x1 = [0,4,6,10,15,20]*scale;
y1 = [18,17.5,13,12,8,10];
x2 = [0,10.5,28]*scale;
y2= [18.2,10.6,10.3];
%% y2 is the target function and y1 is the function to be shifted
f = y1;
g = interp1(x2,y2,x1);
%% linprog inputs
% x = linprog(f,A,b)
% i = 1:length(x1)
A = [fi - 1; -fi -1];
x = [a ui];
b = [gi -gi];
% obj = sum_i u_i (function to minimize)
%% solve system
I am not sure how to set this up and solve this sytem in MATLAB's linprog
Could someone please help?
0 commentaires
Réponse acceptée
Torsten
le 7 Juil 2022
Modifié(e) : Torsten
le 7 Juil 2022
I think the whole procedure only makes sense if x1 is a subset of x2, but here we go:
scale = 1.5;
x1 = [0,4,6,10,15,20]*scale;
y1 = [18,17.5,13,12,8,10];
x2 = [0,10.5,28]*scale;
y2= [18.2,10.6,10.3];
%% y2 is the target function and y1 is the function to be shifted
f = y1;
g = interp1(x2,y2,x1);
ff = [0,ones(size(x1))];
A = [f.',-eye(numel(x1));-f.',-eye(numel(x1))];
b = [g.',-g.'];
sol = linprog(ff,A,b);
a = sol(1)
% Compare with least-squares solution
a2 = sum(f.*g)/sum(f.^2)
And the next step is
min: max_i ( abs( a*f_i - g_i ) )
? :-)
3 commentaires
Torsten
le 7 Juil 2022
Is x just [a u1 u2 u3 u4 u5 u6] ?
Yes.
Then ff^T*x yields sum_i ui.
Yes.
min: max_i ( abs( a*f_i - g_i ) )
sorry, could not understand what you are pointing to.
Besides the two norms you used until now, you can try as a third approach to find "a" that minimizes the maximal deviation of a*f from g:
min: max_i ( abs (a*f_i - g_i) )
Was just a joke :-)
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Solver Outputs and Iterative Display dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!