train with multiple input to get two classes output
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have two folders
folder_1 with two subfolders(good, bad) each with (900 images and 100 image) respectively
folder_2 with two subfolders(good, bad) each with (900 images and 100 image) respectively. when training with pretrained (resnet50) on the "Deep netwoek designer" console, i get the next error about categorical response? any explaination please.
imds_1 = imageDatastore('C:\Users\Folder_1', ...
'IncludeSubfolders',true, ...
'FileExtensions','.jpg', ...
'LabelSource','foldernames');
[imdsTrain_1,imdsValidation_1] = splitEachLabel(imds_1,0.75); %split the data into training and validation
imds_2 = imageDatastore('C:\Users\Folder_2', ...
'IncludeSubfolders',true, ...
'FileExtensions','.jpg', ...
'LabelSource','foldernames');
[imdsTrain_2,imdsValidation_2] = splitEachLabel(imds_2,0.75); %split the data into training and validation
% 'train_ok.txt' contain the labels of the images in (imdsTrain_1 or imdsTrain_2) 750x1
% 'val_ok.txt' contain the labels of the images in (imdsValidation_1 or imdsValidation_2) 250x1
labelStore = tabularTextDatastore('train_ok.txt','TextscanFormats','%C',"ReadVariableNames",false);
labelStoreCell = transform(labelStore,@setcat_and_table_to_cell);
train_multi = combine(imdsTrain_1,imdsTrain_2,labelStoreCell);
train_multi.read
labelStore2 = tabularTextDatastore('val_ok.txt','TextscanFormats','%C',"ReadVariableNames",false);
labelStoreCell2 = transform(labelStore2,@setcat_and_table_to_cell);
val_multi = combine(imdsValidation_1,imdsValidation_2,labelStoreCell2);
val_multi.read
%train_multi.read 750x1
{224×224×3 uint8} {224×224×3 uint8} {[Good ]}
{224×224×3 uint8} {224×224×3 uint8} {[bad ]}
{224×224×3 uint8} {224×224×3 uint8} {[bad ]} ...
%val_multi.read 250x1
{224×224×3 uint8} {224×224×3 uint8} {[Good ]}
{224×224×3 uint8} {224×224×3 uint8} {[Good ]}
{224×224×3 uint8} {224×224×3 uint8} {[bad ]} ....
function [dataout] = setcat_and_table_to_cell(datain)
validcats = ["Good", "bad"];
datain.(1) = setcats(datain.(1),validcats);
dataout = table2cell(datain);
end
9 commentaires
Ben
le 13 Juil 2022
You can do cds = combine(imdsTrain_1,imdsTrain_2) and call shuffle(cds). You will want to also combine an arrayDatastore (or other Shuffleable datastore) containing the labels to use this for training.
Réponses (0)
Voir également
Catégories
En savoir plus sur Image Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!