solving a triple sigma equation (or triple integral)

3 vues (au cours des 30 derniers jours)
형준 이
형준 이 le 14 Juil 2022
Commenté : 형준 이 le 18 Juil 2022
above equation is what i want to express by mathlab code
for definite the A(x,y,z)
A(x,y,z) : random size 3-D vector 00x00x00 (but example is 6x61x17)
below is my try, but i think that is not correct
it is hard to make code... please somebody help me
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
clear
% for A = 6 x 61 x 17 (3-d vector)
A = ones(6,61,17);
k = linspace(10.4, 31.4, 6);
pii = linspace(0, pi, 61); % pii = 𝝓
E = linspace(-2, 2, 17);
for x = 1:6
for y = 1:61
for z = 17
for f = 1:6
for p = 1:61
for e = 1:17
A(x,y,z) = A(x,y,z) + (k(f)).^2 * (1/(norm([x y z]-[cos(pii(p)) sin(pii(p)) E(e)]))) * (1-cos(pii(p))-sin(pii(p))) * exp(1i*k(f)*(((norm([x y z]-[cos(pii(p)) sin(pii(p)) E(e)])))-1));
end
end
end
end
end
end
  5 commentaires
형준 이
형준 이 le 15 Juil 2022
thankyou for your reply
I understand your question
In the original triple integral equation, the integral range is from 0 to inf, 0 to 2*pi, -inf to inf,
but the actual values inserted on equation are finite discrete samples.
Therefore, I transformed the expression to the sigma symbol instead of the integral.
There are 6 smaples of k, 61 of 𝝓, 17 of E which are actually used.
Torsten
Torsten le 15 Juil 2022
When you approximate an integral by a sum, there must appear terms of the form
(k(i+1)-k(i))*(phi(j+1)-phi(j))*(E(n+1)-E(n))
for the volume element in which you evaluate the function.
I don't see this volume element in your finite sum.

Connectez-vous pour commenter.

Réponse acceptée

Chunru
Chunru le 15 Juil 2022
% for A = 6 x 61 x 17 (3-d array)
A = ones(6,61,17);
k = linspace(10.4, 31.4, 6);
pii = linspace(0, pi, 61); % pii = 𝝓
E = linspace(-2, 2, 17);
% reshape to 3d array
k3d = reshape(k, 6, 1, 1); % along 1st dimension
p3d = reshape(pii, 1, 61, 1); % along 2nd dimension
e3d = reshape(E, 1, 1, 17); % along 3rd dimension
for x = 1:6
for y = 1:61
for z = 1:17
R = sqrt((x-cos(p3d)).^2 +(y-sin(p3d)).^2 + (z-e3d).^2);
tmp = k3d.^2 ./ R .* (1-x*cos(p3d)-y*sin(p3d)) .* exp(1i * k3d .*(R-1));
A(x,y,z) = sum(tmp, 'all');
end
end
end
imagesc(20*log10(abs(A(:, :, 8)))); % slice for z=8

Plus de réponses (0)

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Produits


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by