symbolic integration depends on different equivalent forms of function
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I performed the following equaivalent symbolic integrations:
syms x y
A = int(x+y,x);
A_ = expand(A); % just expanded (equaivalent) form of A
B = expand(int(A,y))
B_ = expand(int(A_,y))
with the following results:
A =
(x*(x + 2*y))/2
A_ =
x^2/2 + y*x
B =
x^3/8 + (x^2*y)/2 + (x*y^2)/2
B_ =
(x^2*y)/2 + (x*y^2)/2
I expect B equal to B_, but there is a misterious additional term x^3/8 at B ??!!
Is that a bug???
0 commentaires
Réponses (2)
Torsten
le 15 Juil 2022
The difference is a usual "constant of integration".
If you differentiate both B and B_ with respect to y and then with respect to x, you'll arrive at the expression x+y in both cases:
syms x y
B_ = (x^2*y)/2 + (x*y^2)/2;
B = x^3/8 + (x^2*y)/2 + (x*y^2)/2;
A_ = diff(B_,y);
A = diff(B,y);
expr1 = diff(A_,x)
expr2 = diff(A,x)
7 commentaires
Torsten
le 15 Juil 2022
I'm not surprised that
int((x*(x + 2*y))/2,y)
gives a result different from
int(x^2/2 + y*x,y).
See
syms x
int((x-1)^2,x)
compared to
int(x^2-2*x+1,x)
Paul
le 15 Juil 2022
Modifié(e) : Paul
le 15 Juil 2022
I'm not surprised either. I've seen cases where int() couldn't find a solution unless the integrand was manipulated using simplify, expand, etc. Here is an example from this Question
syms t
assume(t, "real")
f1 = 3*t-t*t*t;
f2 = 3*t*t;
f = [f1, f2];
df = diff(f, t);
a = 0;
b = 1;
normDf = sqrt(df(1)*df(1)+df(2)*df(2));
int(normDf,t,a,b) % no solution
normDf = simplify(normDf)
int(normDf, t, a, b) % easy
Michal
le 16 Juil 2022
Modifié(e) : Michal
le 16 Juil 2022
4 commentaires
Torsten
le 16 Juil 2022
Modifié(e) : Torsten
le 16 Juil 2022
syms x y
A1 = int(sin(x)+sin(y),x,0,x);
B1 = int(A1,y,0,y)
simplify(B1)
A2 = int(sin(x)+sin(y),x);
B2 = int(A2,y)
You see, the integration constant of your method is x+y.
All I want to say is:
Each integration gives its individual integration constant. For the differential equation
d/dx (d/dy(F(x,y))) = x+y
e.g., the "integration constants" are functions of the form
G(x,y) = g1(x) + g2(y)
unless you fix F on a curve in the (x,y) plane (not parallel to one of he coordiante axes).
Some integration constants look more plausible, others less.
And now I will be quiet and you can have "the last word", if you want.
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!