I have a problem with my detector , i get [bbox, score, label] empty.
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
%% detection
pp=alexnet;
pp1=pp.Layers;
pp=pp.Layers(1:19);
ppp=[pp
fullyConnectedLayer(2)
softmaxLayer()
classificationLayer()];
options = trainingOptions('sgdm', ...
'MiniBatchSize', 10, ...
'InitialLearnRate', 1e-3, ...
'MaxEpochs', 1, ...
'CheckpointPath', tempdir);
train1 =trainFastRCNNObjectDetector(gTruth, ppp, options, ...
'NegativeOverlapRange', [0 0.1], ...
'PositiveOverlapRange', [0.5 1], ...
'SmallestImageDimension', 300);
img = imread('image (825).JPG');
[bbox, score, label] = detect(train1, img);
imshow(insertObjectAnnotation(img, 'rectangle', bbox, label));
0 commentaires
Réponses (1)
Shuba Nandini
le 1 Sep 2023
Hello,
It is my understanding that you want to train the “trainFastRCNNObjectDetector” with ‘alexnet’ as the backbone network.
As per the documentation, “trainFastRCNNObjectDetector” function offers a functionality to automatically transform the backbone classification network, into a Fast R-CNN network by adding an ROI max pooling layer, classification layer and regression layer.
The above functionality can be achieved, by specifying the required classification network name for the “network” argument.
Please refer to the following link, for further information,
Hope this helps!
Regards,
Shuba Nandini
0 commentaires
Voir également
Catégories
En savoir plus sur Introduction to Installation and Licensing dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!