Newton's method problem
13 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
clear all; close all;
a=4;
b=3;
x=zeros();
x(1)=1;
for i=1:1000;
f(x(i))=(x(i)-a)^2+b;
x(i+1) =x(i)-(f(x(i))/diff(f(x(i))));
end
4 commentaires
Réponses (3)
Andrei Bobrov
le 7 Oct 2011
for your case EDITED
f = @(x)(x - 4)^2 + 9;
syms x
ex = (x - 4)^2 + 9;
cf = double(coeffs(ex));
distxp = (4*prod(cf([1 end]))-cf(2)^2)/4/cf(3);
fun = matlabFunction(ex - distxp);
df = matlabFunction(diff(ex));
x = 10;
xout = x;
while abs(fun(x)) > 1e-6
x1 = x - fun(x)/df(x);
x = x1;
xout = [xout;x];
end
ADD corrected
f = @(x)(x - 4)^2 + 9;
syms x
ex = (x - 4)^2 + 9;
cf = fliplr(double(coeffs(expand(ex))));
distxp = (4*prod(cf([1 end]))-cf(2)^2)/4/cf(1);
fun = @(x)f(x)-distxp;
dcf = polyder(cf);
df = @(x)polyval(dcf,x);
x = 10;
xout = x;
while abs(fun(x)) > 1e-6
x1 = x - fun(x)/df(x);
x = x1;
xout = [xout;x];
end
output for the first 10 iterations and optimal x
if numel(xout)<=10
out = xout;
else
out = [xout(1:10);xout(end)];
end
7 commentaires
Andreas Goser
le 7 Oct 2011
This code isn't working because diff(f(x(i))) returns [] and thus a scalar can't be divide by [].
Steve
le 9 Oct 2011
You can use this Newton function implementation in general.
function n = newton(f,fp,x0,tol,Nmax)
n=0;
test_val = abs(poly_val(f,x0));
num1 = 1;
while (test_val > tol && num1<Nmax)
n = x0 - poly_val(f,x0)/poly_val(fp,x0);
test_val = abs(poly_val(f,n));
x0=n;
num1=num1+1;
end
end
Voir également
Catégories
En savoir plus sur Nonlinear Optimization dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!