GOT AN ERROR ON VGG19 FULLYCONNECTED LAYER
3 views (last 30 days)
Show older comments
Dear All
Anyone can help me to solve the problem?
Below is my code for VGG19 net.
I have 75 folder data. In each folder have 5 set images. every images have size 240x240x155.
But I got error below
Error using trainNetwork
Layer 39: Invalid initializer. Requested 75x285696000 (159.6GB) array exceeds maximum array size preference (15.9GB). This might
cause MATLAB to become unresponsive.
Caused by:
Error using nnet.internal.cnn.assembler.InitializeMixin/initializeLearnableParameters
Layer 39: Invalid initializer. Requested 75x285696000 (159.6GB) array exceeds maximum array size preference (15.9GB). This
might cause MATLAB to become unresponsive.
Related documentation
below is my code
clc
clear all
close all
%testDataimages
volReader = @(x) niftiread(x);
volds = imageDatastore('C:\Users\USER\Downloads\LGG',...
'IncludeSubfolders', true,...
'LabelSource', 'foldernames','FileExtensions','.nii','ReadFcn',volReader);
layers = [
image3dInputLayer([240 240 155],"Name","image3dinput")
convolution3dLayer([3 3 3],32,"Name","conv3d_1","Padding","same")
reluLayer("Name","relu_1")
convolution3dLayer([3 3 3],32,"Name","conv3d_2","Padding","same")
reluLayer("Name","relu_2")
maxPooling3dLayer([5 5 5],"Name","maxpool3d_1","Padding","same")
convolution3dLayer([3 3 3],32,"Name","conv3d_3","Padding","same")
reluLayer("Name","relu_3")
convolution3dLayer([3 3 3],32,"Name","conv3d_4","Padding","same")
reluLayer("Name","relu_4")
maxPooling3dLayer([5 5 5],"Name","maxpool3d_2","Padding","same")
convolution3dLayer([3 3 3],32,"Name","conv3d_5","Padding","same")
reluLayer("Name","relu_5")
convolution3dLayer([3 3 3],32,"Name","conv3d_6","Padding","same")
reluLayer("Name","relu_6")
convolution3dLayer([3 3 3],32,"Name","conv3d_7","Padding","same")
reluLayer("Name","relu_7")
convolution3dLayer([3 3 3],32,"Name","conv3d_8","Padding","same")
reluLayer("Name","relu_8")
maxPooling3dLayer([5 5 5],"Name","maxpool3d_3","Padding","same")
convolution3dLayer([3 3 3],32,"Name","conv3d_9","Padding","same")
reluLayer("Name","relu_9")
convolution3dLayer([3 3 3],32,"Name","conv3d_10","Padding","same")
reluLayer("Name","relu_10")
convolution3dLayer([3 3 3],32,"Name","conv3d_11","Padding","same")
reluLayer("Name","relu_11")
convolution3dLayer([3 3 3],32,"Name","conv3d_12","Padding","same")
reluLayer("Name","relu_12")
maxPooling3dLayer([5 5 5],"Name","maxpool3d_4","Padding","same")
convolution3dLayer([3 3 3],32,"Name","conv3d_13","Padding","same")
reluLayer("Name","relu_13")
convolution3dLayer([3 3 3],32,"Name","conv3d_14","Padding","same")
reluLayer("Name","relu_14")
convolution3dLayer([3 3 3],32,"Name","conv3d_15","Padding","same")
reluLayer("Name","relu_15")
convolution3dLayer([3 3 3],32,"Name","conv3d_16","Padding","same")
reluLayer("Name","relu_16")
maxPooling3dLayer([5 5 5],"Name","maxpool3d_5","Padding","same")
fullyConnectedLayer(75,"Name","fc_3")
reluLayer("Name","relu_18")
dropoutLayer(0.5,"Name","dropout_1")
fullyConnectedLayer(75,"Name","fc_2")
reluLayer("Name","relu_17")
dropoutLayer(0.5,"Name","dropout_2")
fullyConnectedLayer(75,"Name","fc_1")
softmaxLayer("Name","softmax")
pixelClassificationLayer("Name","pixel-class")];
plot(layerGraph(layers));
% Train network - 10000 epochs and 10 Augmentations per mask.
maxEpochs = 200;
options = trainingOptions('adam', ...
'MaxEpochs',maxEpochs, ...
'InitialLearnRate',1e-3, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropPeriod',5, ...
'LearnRateDropFactor',0.97, ...
'Plots','training-progress', ...
'Verbose',false);
% 'CheckpointPath', checkpointPath );
[convnet, traininfo] = trainNetwork(volds, layers, options);
0 Comments
Answers (0)
See Also
Categories
Find more on Deep Learning with Images in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!