Optimization of the weighted average sum of matrix norms in the workspace using the Optimization Tool
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
There are workspace from three 3x3 matrices with random elements:
A=rand(3,3);
B=rand(3,3);
C=rand(3,3);
There are 9 vectors of the following form:
u1=[cos(a);sin(a);1-cos(0)]
u2=[cos(a);sin(a);1-cos(2*pi/3)]
u3=[cos(a);sin(a);1-cos(-2*pi/3)]
v1=[sin(b)*cos(C);sin(a);-cos(0)-1]
v2=[sin(b)*cos(C);sin(a);-cos(2*pi/3)-1]
v3=[sin(b)*cos(C);sin(a);-cos(-2*pi/3)-1]
w1=[cos(A);sin(B);-sin(0)]
w2=[cos(A);sin(B);-sin(2*pi/3)]
w3=[cos(A);sin(B);-sin(-2*pi/3)]
here - variables;
The matrix of the following form is formed from the vectors:
J=[cross(v1,w1)/dot(cross(u1,v1),w1) cross(v2,w2)/dot(cross(u2,v2),w2) cross(v3,w3)/dot(cross(u3,v3),w3)];
Problem: We need to find parameters that minimize the weighted average sum of matrix J norms at each of the workspace points, i.e.:
How to solve this problem using Optimization Tool ?
2 commentaires
Matt J
le 26 Juil 2022
Modifié(e) : Matt J
le 26 Juil 2022
There are 9 vectors of the following form:
If A,B,C are 3x3 matrices and a,b are scalars, then v and w cannot be vectors. Nor can you run the code you've posted without concatenation error messages.
A=rand(3,3);
B=rand(3,3);
C=rand(3,3);
a=pi; b=pi;
u1=[cos(a);sin(a);1-cos(0)]
u2=[cos(a);sin(a);1-cos(2*pi/3)]
u3=[cos(a);sin(a);1-cos(-2*pi/3)]
v1=[sin(b)*cos(C);sin(a);-cos(0)-1]
v2=[sin(b)*cos(C);sin(a);-cos(2*pi/3)-1]
v3=[sin(b)*cos(C);sin(a);-cos(-2*pi/3)-1]
w1=[cos(A);sin(B);-sin(0)]
w2=[cos(A);sin(B);-sin(2*pi/3)]
w3=[cos(A);sin(B);-sin(-2*pi/3)]
Réponses (0)
Voir également
Catégories
En savoir plus sur Get Started with Optimization Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!