Solve nonlinear 2nd order ODE numerically
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I need to solve the following nonlinear 2nd order ODE, that is, find
such that
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1080765/image.png)
![1-x=-\frac{y''(x)}{(1+(y'(x))^2)^{{3/2}}](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1080770/2}}.png)
I tried using
>> syms y(x)
>> ode = -diff(y,x,2)/(1+(diff(y,x))^2)^(3/2) == 1-x;
>> ySol(x) = dsolve(ode)
but it doesn't work since apparently there is no anaylitical solution (if I rearrange the terms it does find a system of complex solutions, but I think the it is not right).
Isn't there a command to solve ODEs numerically? I am expeting something like the family of plots from here https://www.wolframalpha.com/input?i=f%27%27%28t%29%2F%28%281%2B%28f%27%28t%29%29%5E2%29%5E%283%2F2%29%29+%3D+-%281-0.25t%29
Many thanks oin advance!
2 commentaires
Réponse acceptée
Sam Chak
le 28 Juil 2022
Hi @Lucas
You can follow the example here
and try something like this:
tspan = [0 1.15];
y0 = [1 0]; % initial condition
[t,y] = ode45(@(t, y) odefcn(t, y), tspan, y0);
plot(t, y(:,1)), grid on, xlabel('t')
function dydt = odefcn(t, y)
dydt = zeros(2,1);
c = 0.25;
dydt(1) = y(2);
dydt(2) = - (1 - c*t)*(1 + y(2)^2)^(3/2);
end
Plus de réponses (2)
MOSLI KARIM
le 12 Août 2022
function pvb_pr13
tspan=[0 1.5];
y0=[1 0];
[x,y]=ode45(@fct,tspan,y0);
figure(1)
hold on
plot(x,y(:,1),'r-')
grid on
function yp=fct(x,y)
c=0.25;
yp=[y(2);-(1-c*x)*((1+(y(2))^2)^(3/2))];
end
end
1 commentaire
Voir également
Catégories
En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!