Numerical answer to Partial derivative of Hopfield-style Energy in symbolic expression
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello,
I'm implementing a gradient descent optimizer that uses Hopfield-style energy as function,
the hopfield-style energy is a function of p:
The hopfield energy equation can also be expressed as:
The gradient vector is defined as:
I'm attempting to calculate the gradient vector using the Symbolic Toolbox as follows:
r_mat = sym('r',[4,4]);
r_mat = r_mat(:);
p_mat = sym('p',[4*4,1]);
c_mat = sym('c',[4*4,1]);
Energy = -0.5*p_mat'*r_mat*p_mat' - c_mat'*p_mat;
%the first partial derivative:
q1 = -1*diff(testi1,p_mat(1,1));
which yields as the first term:
conj(c1) + r1_1*conj(p1) + (r1_2*conj(p5))/2 + (r1_3*conj(p9))/2 + (r2_1*conj(p2))/2 + (r1_4*conj(p13))/2 + (r2_2*conj(p6))/2 + (r2_3*conj(p10))/2 + (r3_1*conj(p3))/2 + (r2_4*conj(p14))/2 + (r3_2*conj(p7))/2 + (r3_3*conj(p11))/2 + (r4_1*conj(p4))/2 + (r3_4*conj(p15))/2 + (r4_2*conj(p8))/2 + (r4_3*conj(p12))/2 + (r4_4*conj(p16))/2
How can I replace the symbols with numbers to yield the q vector? I need the q-vector for the gradient descent
the algorithm I'm implementing: https://doi.org/10.1117/1.JEI.23.1.013007 (relevant part starts at Equation 5)
0 commentaires
Réponse acceptée
Torsten
le 28 Juil 2022
Modifié(e) : Torsten
le 28 Juil 2022
p is (4x1), not (16x1).
And keep r_mat as matrix, then
E = -0.5*p.'*r_mat*p - c.'*p
( r_mat can be assumed symmetric ).
By the way:
dE/dp = -r_mat*p - c
assuming r_mat is symmetric.
To replace symbols by numerical values, use "subs".
5 commentaires
Torsten
le 2 Août 2022
I used symbolic to calculate the partial derivative and then used that to think how to write the equation in vector form
That's the best you can do, I guess.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!