Facing problem while solving this.
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
AVINASH SAHU
le 31 Juil 2022
Commenté : Walter Roberson
le 31 Juil 2022
p1 = @(x) (1./F(x)) .* ((0.5 .* hbar(x)) - Q);
P = @(x) integral(@(x) p1(x),0,x,'ArrayValued', true);
xi = linspace(0,1) ;
P1 = zeros(size(xi)) ;
for j = 1:length(xi)
P1(j) = P(xi(j));
end
Using the abpve approach I am getting datasets of P1 but not able to figure out how to approach in the following method given below
for i = 1:100
p1(i) =(((0.5*hbar(i))-Q)/F(i));
% P = @(x) integral(@(x) p1(x),0,x,'ArrayValued', true); %%%% how
% to write this line here?
end
0 commentaires
Réponse acceptée
Walter Roberson
le 31 Juil 2022
p1{1} = @(x) (1./F(x)) .* ((0.5 .* hbar(x)) - Q);
P{1} = @(x) integral(p1{1}, 0, x, 'ArrayValued', true);
xi = linspace(0,1) ;
P1 = zeros(size(xi)) ;
for j = 1:length(xi)
P1(j) = P{1}(xi(j));
end
for i = 1:100
p1{i} = @(x) (((0.5*hbar(i))-Q)/F(i));
P{i} = @(x) integral(p1{i}, 0, x, 'ArrayValued', true);
end
Note that this would overwrite the original p1{1} and P{1}
Also note that your p1{i} does not involve x, so the body would effectively be constant, and the result of the integral would be x times the constant minus 0 times the constant, which is predictable ahead of time.
2 commentaires
Walter Roberson
le 31 Juil 2022
You cannot do that.
Your original code defines p1 as an anonymous function handle. Your new version defines p1(i) as a numeric constant, not as a function handle. It is not useful to integrate a numeric constant.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!