How to generate a smooth derivative after fitting a curve to the data?

31 vues (au cours des 30 derniers jours)
Hi all,
I have a set of data which is attached. I used spline function to fit the data and then fnder to take the second derivative and my results ended to be very noisy. I tried fit(x,y,'smoothinhgspline') and I got a noisy derivative. I don't know how to find a smooth derivative. I'd appreciate your suggestions.
Here's my code:
load Data %Matt J added
% using cubic spline
pp = spline(x,y);
derX= fnder(pp,2);
yy = fnval(derX,x);
% using fit
fit1 = fit( x, y, 'smoothingspline' );
[d1,d2] = differentiate(fit1,x);
when I plot yy and d2, none are smooth, they are very noisy.
plot(x,yy,x,d2) %Matt J added
legend('Non-Smoothed','Smoothed'); %Matt J added
  11 commentaires
Matt J
Matt J le 1 Août 2022
I've added some lines of code and RUN output to the original post.
Torsten
Torsten le 1 Août 2022
I get this graph for the second derivative in OCTAVE:
Sorry, it's the first derivative that I included as graphics.

Connectez-vous pour commenter.

Réponse acceptée

Bruno Luong
Bruno Luong le 1 Août 2022
Modifié(e) : Bruno Luong le 1 Août 2022
You have to FIT the spline, not interpolate.
For example I use my own tool BSFK avalable in FEX.
load Data.mat;
pp = BSFK(x,y); % FEX
% Check the spline model
xq = linspace(min(x),max(x),100);
pp1 = ppder(pp); pp2 = ppder(pp1); % You might use fnder, I don't have the toolbox
subplot(2,1,1)
plot(x,y,'.r',xq, ppval(pp,xq),'b')
legend('data', 'spline fitting')
subplot(2,1,2)
plot(xq,ppval(pp2,xq),'b')
ylabel('second derivative')
  5 commentaires
Bruno Luong
Bruno Luong le 1 Août 2022
Modifié(e) : Bruno Luong le 1 Août 2022
OK attached is the script, graphical plot and MATLAB derivative data, if you find anything incoherent with the second derivative (computed by 2 ways) please let me know.
If not you can contact the author of whatever the literature you read and ask him/her to correct.
azarang asadi
azarang asadi le 2 Août 2022
Thank you so much for all the help. appreciated

Connectez-vous pour commenter.

Plus de réponses (1)

Matt J
Matt J le 1 Août 2022
Modifié(e) : Matt J le 1 Août 2022
You can try some different choices of the smoothing parameter,
load Data
% using cubic spline
pp = spline(x,y);
derX= fnder(pp,2);
yy = fnval(derX,x);
plot(x,yy,'--'); hold on
for p=[0.9999,0.999,0.95]
% using fit
fit1 = fit( x, y, 'smoothingspline' ,SmoothingParam=p);
[d1,d2] = differentiate(fit1,x);
legend(string(p))
plot(x,d2);
end; hold off
legend(["Non-Smoothed","p="+string([0.9999,0.999,0.95])])

Catégories

En savoir plus sur Get Started with Curve Fitting Toolbox dans Help Center et File Exchange

Produits


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by